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The Mpox Challenge

The 2022 outbreak
required rapid diagnosis

Basic Al model: 85%

accuracy
Black box models lack ol
clinical trust i
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The Segmentation Challenge

Manual Boundary Labelling

Precise lesion borders needed

Time-Intensive Process

1,000 images over several months

Accuracy vs Efficiency

Clinician burnout risk



Generalizable Segment Anything Model via Selection
Strategy for SKkin Lesion Segmentation
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Skin Automatically Segmentation

10, 000+

Dermatoscope Images

training on

~Ss

Per Image

vs minutes manually




The Data Scarcity Problem

"Medical images/data are like gold for medical Al

The more we have, the better models we can build."

Working from a sexual health centre presented unique challenges:

e Patient images are highly sensitive

* Privacy regulations limit data sharing

« Rare conditions have limited examples

* Diverse skin tones are underrepresented

- -
Limited Patient Images Sensitive Content Al Needs Data
Privacy concerns from sexual Ethical constraints on sharing Model accuracy depends on

health context diverse examples



Skin Generation

mmm Becyond Art Generation

 Unlike artistic Al generation, medical image synthesis
demands clinical accuracy and realistic pathology
representation

mmm Clinical Realism

» Generate images require accurate lesion textures,
natural skin tones, and clinically relevant features

mmm Privacy Protection

 Synthetic data allows us to expand the dataset without
compromising patient privacy or requiring additional
consent
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Figure 2: Limited Lesion Control Parameters Cause a Sharp Contrast



Controllable SKkin Synthesis via Lesion-Focused Vector
Autoregression Model
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Visual Challenge

Can you determine which are real patient photos and which are generated by Al?




Visual Challenge Result

All ITmages Are AI-Generated



Clinical Implications
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Orders of magnitude more examples | o e gy

Education Tool

Teaching without patient privacy
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Generate examples of uncommon , - o
presentations VASC



Collaboration Team

Supervisor team

Al Experts

Researchers

Clinicians

Prof. Lei Zhang
Melbourne Sexual

Health Center

Dr. Zhen Yu
Research Fellow

Prof. Christopher Fairley
Melbourne Sexual Health
Center

Prof. Jason Ong
Melbourne Sexual
Health Center

A/P Zhongyuan Ge
Monash e-Research Centre

Siyuan Yan
Ph.D. Candidate

Dr. Janet Towns
Research Fellow

Jiajun Sun
Ph.D. Candidate

Dr. Yingping Li
Post doctoral

4 )

Dr. Alicia King

Dr. David Lee

Dr. Ranjit Samra

Dr. Yasmin Hughes
Dr. Andrew Buchanan
Dr. Catriona Bradshaw
Dr. Marcus Chen

Dr. Ei Thu Aung

Dr. Emily Clarke

Dr. Henzell Helen

Dr. lan Denham

Dr. Martina Schmidt
Dr. Stephen Rowles

. J

4 MONASH
" University

MSHC

MELBOURNE SEXUAL HEALTH CENTRE




Thanks for watching

Eﬂu
'-Iii.

Project Homepage Connect with me

o

Email:

Jiajun.Sun@monash.edu




	Slide 1: Generalizable Segment Anything Model via Selection Strategy for Skin Lesion Segmentation
	Slide 2: Disclosure of interest
	Slide 3: The Mpox Challenge
	Slide 4: The Segmentation Challenge
	Slide 5: Generalizable Segment Anything Model via Selection Strategy for Skin Lesion Segmentation
	Slide 6: Skin Automatically Segmentation
	Slide 7: The Data Scarcity Problem
	Slide 8: Skin Generation
	Slide 9: Controllable Skin Synthesis via Lesion-Focused Vector Autoregression Model
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Thanks for watching

