

The public health impact of molecular POC testing for COVID-19 in remote Aboriginal and Torres Strait Islander communities during the pandemic in Australia

Belinda Hengel ¹, Louise Causer ¹, Kirsty Smith ¹, Tanya Applegate ¹, Prital Patel ¹, Lauren Cooney ¹, Kelly Andrewartha ², Dawn Casey⁴, Lorraine Anderson³, Rachael Papa¹, Ben Hui¹, David Regan¹, Susan Matthews², Rebecca Guy¹ on behalf of the COVID-19 Point-of-Care Testing team and Clinical Advisory Group.

Remote communities and COVID-19

Aboriginal & Torres Strait Islander community led response:

- Learnings from H1N1
- Establishment of <u>National Aboriginal and Torres</u>
 <u>Strait Islander COVID-19 advisory group (now NATSIHP)</u>
- Co-led by NACCHO and the Department of Health
- Australian Health Protection Principal (AHPPC) Sub-Committee

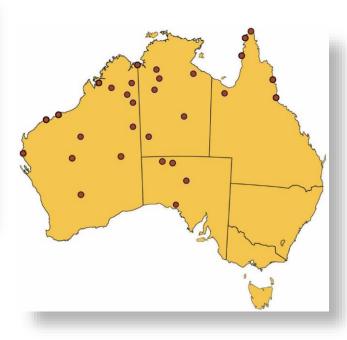
Aboriginal and Torres Strait Islander Advisory Group

Remote communities

Need for a rapid, robust, tailored community-led response

National guidelines for remote communities – multiple strategies

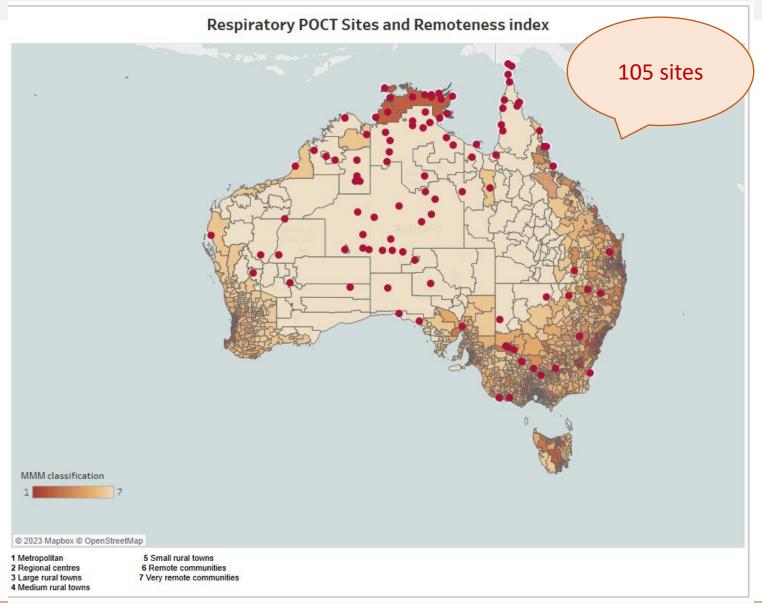
Point of Care testing: TTANGO – Test, Treat ANd GO



Chlamydia trachomatis, Neisseria gonorrhoeae and Trichomonas vaginalis

- 9 years
- Aboriginal Health Practitioner and Registered Nurse operators
- GeneXpert testing
- Improved time to treatment
- National Program 31 sites at the beginning of COVID

A "no brainer" – to leverage this network to close the gap during COVID-19

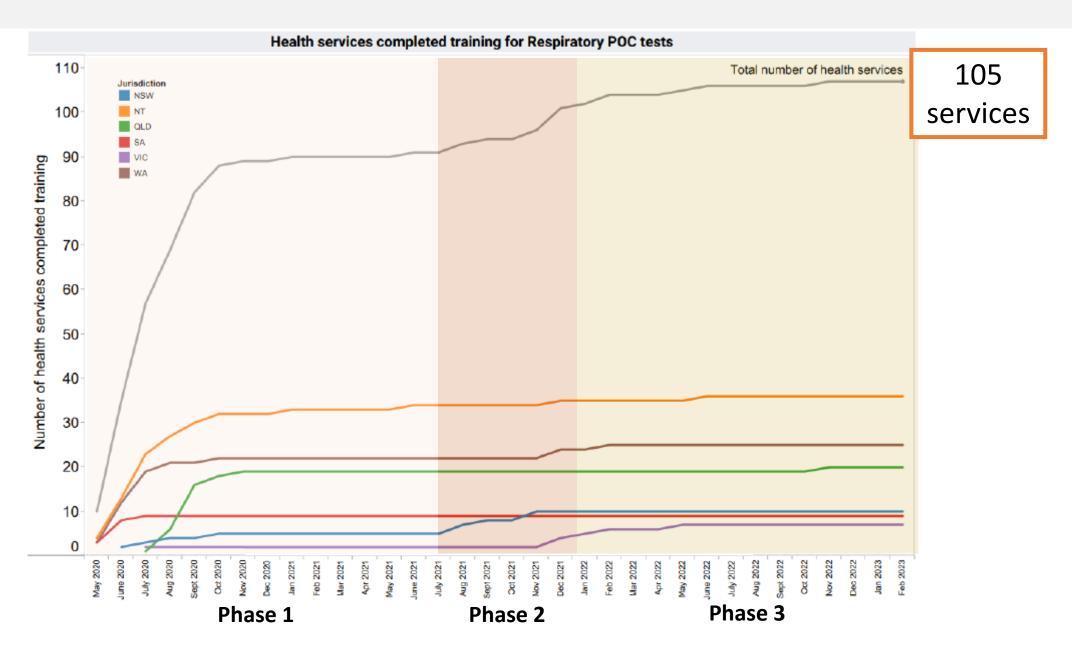


Trained health service staff (AHP, Drs, RNs) providing tests within primary health care services

Xpert® SARS-CoV-2 assay (45min)

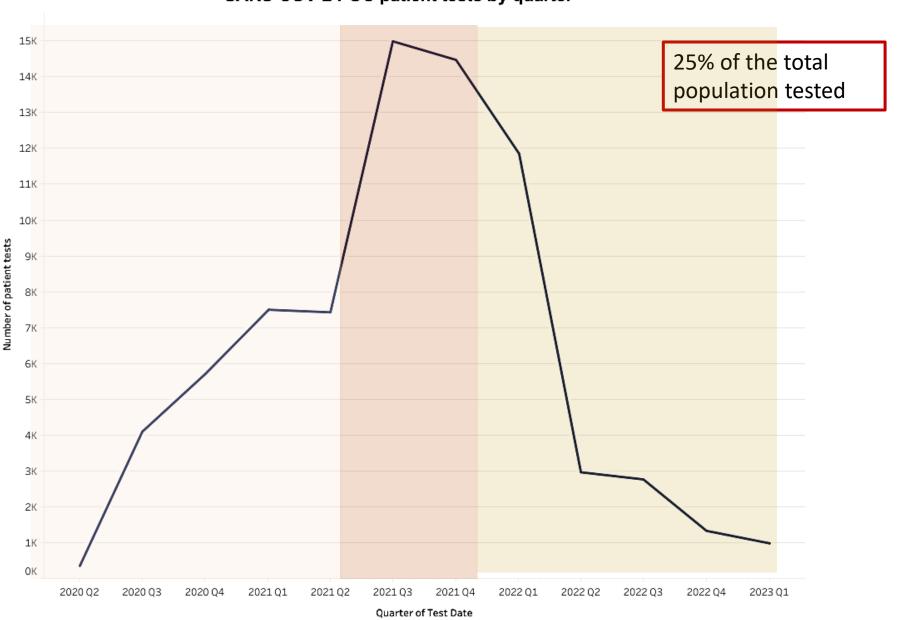
Here we'll describe the public health impact:

- 1. The program **scale & positivity** across the network
- 2. The public health impact, for infections averted of the program up until August 2022

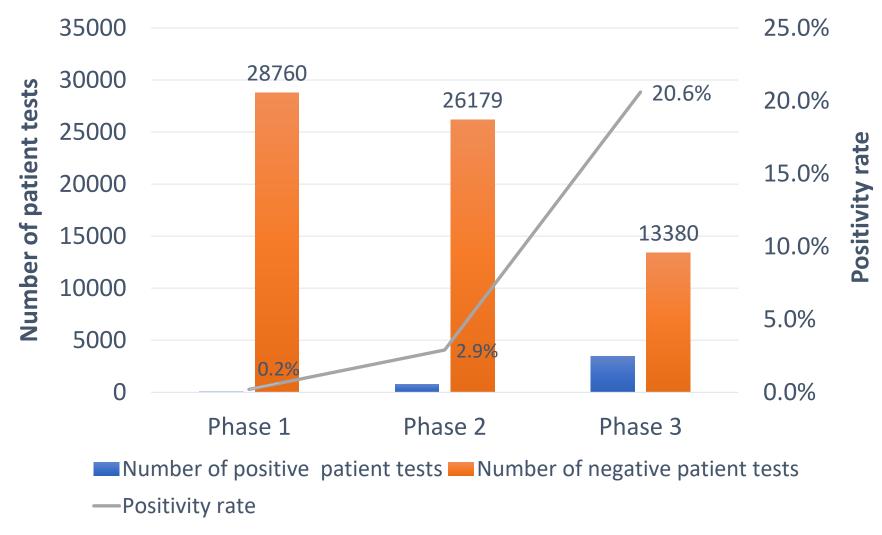

Program scale & positivity:

Using deidentified COVID-19 POC testing program data:

- Testing coverage
- Positivity across three
 epidemiological
 phases


Epidemiological phase	Definition	Time period
Phase 1	Beginning of the Program till first cases of community transmission	May 2020 – July 2021
Phase 2	Established community transmission in two jurisdictions	August 2021 – December 2021
Phase 3	Established transmission throughout the national network Rapid antigen tests available and national cabinet policy changes eliminated need for confirmatory PCR	January 2022 – August 2022*

^{*} Phase 3 is ongoing, however the study period was limited to August 2022

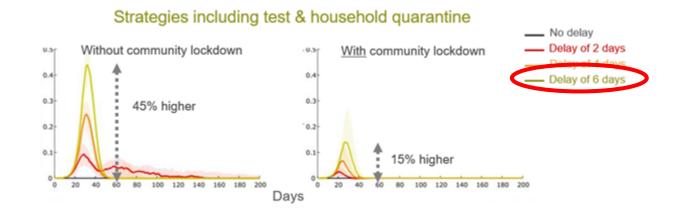


COVID-19 POC patient test positivity (May 2020 – August 2022)

^{*} Positive and or presumptive positive qualitative PCR result

Public health impact – using counterfactual modelling

- Program data + public health notifications = estimated total unique positive cases over 40 days after the first cases was detected within a community
- Compared to modelling data (Hui et al) describing the number of cases predicted
 if there was a delay in the initiation of public health responses (assuming a 6-day
 delay)


Hui et al. BMC Infect Dis (2021) 21:929 https://doi.org/10.1186/s12879-021-06607-5 **BMC Infectious Diseases**

RESEARCH ARTICLE

Open Access

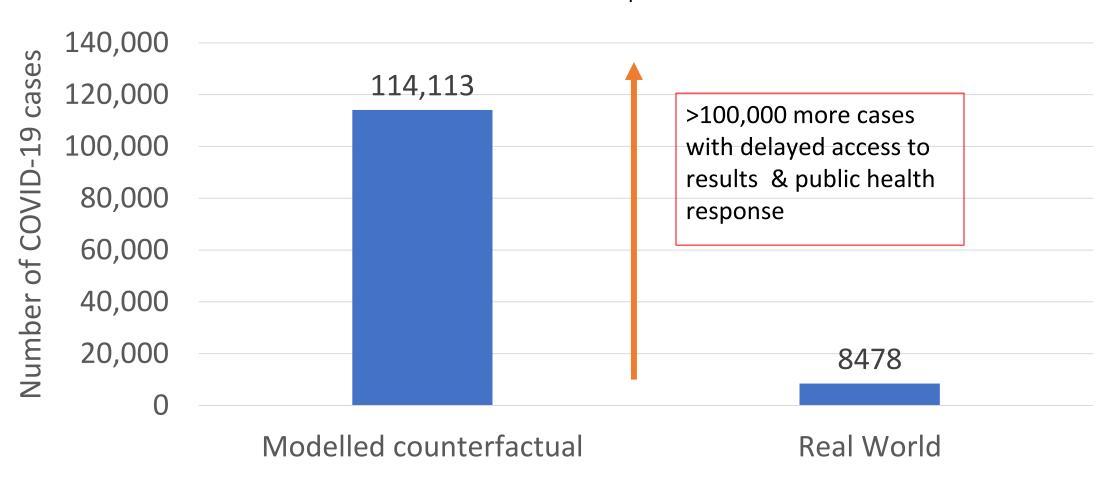
Modelling testing and response strategies for COVID-19 outbreaks in remote Australian Aboriginal communities

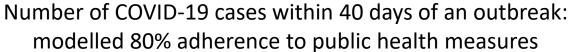
Ben B. Hui^{1*†}, Damien Brown^{2,3†}, Rebecca H. Chisholm^{4,3}, Nicholas Geard^{5,2}, Jodie McVernon^{6,3†} and David G. Regan^{1†}

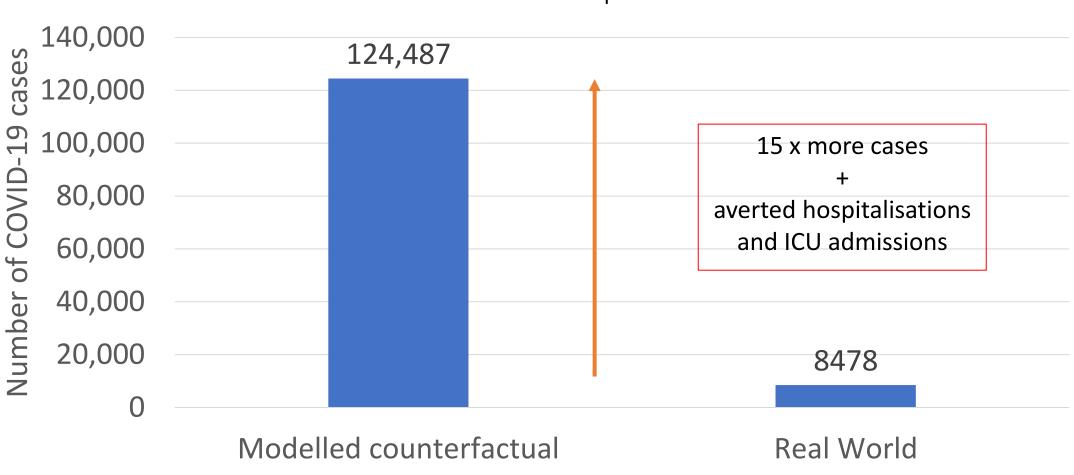
2. Public health impact – using counterfactual modelling (Hui et al)

Resident population from participating services = 148,199

Predicted % of the population infected within 40 days (Hui et al) with a 6 day delay




90% adherence to public health measures = 77% of pop'n infected 80% adherence to public health measures = 84% of pop'n infected



Number of COVID-19 cases within 40 days of an outbreak: modelled 90% adherence to public health measures

Limitations:

- Modelled on early variants (Wuhan), therefore the rate of transmission used in the modelled estimates may be an underestimate of true transmission rates.
- Vaccination not included however this will be done in future analysis
- ➤ Model assumed contacts isolated alone, and cases were isolated immediately this may have varied across services due to access to quarantine facilities.
- This is a preliminary analysis focusing only on the first 40 days after an outbreak started in communities and is not reflective of the whole pandemic

Summary 2

- ➤ Rapid expansion, most sites located within remote areas of Australia where access to rapid test results is limited
- ➤ Reached ~25% of the total population (Aboriginal and Torres Strait Islander peoples)
- Targeted testing during the outbreak in remote areas (lower test numbers, higher positivity)
- ➤ Based on modelled predictions, between 100,000 and 120,000 infections were averted due to rapid access to test results via the molecular POC test, compared to a 6-day delay.
- Therefore, not only were infections averted, but likely subsequent hospitalisations and deaths were also averted.

Acknowledgements

- Indigenous Health Branch, Australia Government Department of Health
- COVID-19 POC Clinical Advisory Group
- The National Aboriginal and Torres Strait Islander COVID-19 Advisory Group
- Participating Aboriginal community controlled and government health services
- National, state and local Aboriginal Community Controlled Health
 Organisations and members who contributed to jurisdictional meetings:
 - National Aboriginal Community Controlled Health Organisation
 - · Aboriginal Health Council of WA
 - Ngaanyatjarra Health Service, WA
 - Kimberley Aboriginal Medical Services, WA
 - Aboriginal Health Council of SA
 - · Nganampa Health Council, SA
 - Victorian Aboriginal Community Controlled Health Organisation
 - Aboriginal Health and Medical Research Council of NSW
 - Aboriginal Medical Services Alliance Northern Territory
 - Central Australian Aboriginal Congress, Alice Springs, NT
 - Queensland Aboriginal and Islander Health Council, QLD
 - Apunipima Cape York Health Council, QLD

State health departments and other government services

- WA Health
- WA Country Health Service
- SA Health
- Department of Health & Human Services, Victoria.
- NSW Health
- QLD Health
- NT Health

Industry

- Cepheid Inc
- Medical Communication Associates, Adelaide
- HealthLink
- Logical Freight Solutions
- TNT Express

Other centres

- University of Queensland Centre for Clinical Research
- University of Queensland Poche Centre for Indigenous Health
- Immunovirology and Pathogenesis Program, The Kirby Institute, UNSW Sydney
- St Vincent's Centre for Applied Medical Research
- Longhorn Vaccines and Diagnostics LLC

Pathology providers

- PathWest
- Pathology Queensland
- Forensic and Scientific Services
- SA Pathology
- Territory Pathology
- NSW Pathology
- Victorian Infectious Disease Reference Laboratory
- The Royal College of Pathologists of Australasia Quality Assurance Program
- NSW State Reference Laboratory for HIV & Molecular Diagnostics Medicine Laboratory, SydPath, St Vincent's Hospital Sydney

Program evolution....

- > Evaluation:
 - > Expansion of public health impact analysis hospitalisations
 - Cost effectiveness
 - Social science success stories and innovation
- > First Nations Molecular POC testing program:
 - Transition from single assay SARS-CoV-2 testing to multiplex (Flu A, B and RSV)
 - Scale up to include more services
- MRFF funding Rapid Applied Research Translation co-led by NACCHO
 - Sustainability of critical support systems (workforce, training, funding)
 - > Demonstration projects for other infectious diseases (HPV, GAS etc)

NACCHO

Other presentations....

Session G: Innovating systems to ensure quality. Tuesday, March 14 – 4:30 – 5:30 PM

An innovative connectivity solution for national decentralised infectious diseases testing programs in regional and remote
primary health services in Australia.

Presenting Author: Amit Saha, Lecturer, The Kirby Institute

Session J: Community-led and community-based responses Wednesday, March 15 - 11:00 AM - 12:40 PM

 COVID-19 POC testing in remote Aboriginal and Torres Strait Islander Communities: informing a community-led response in an uncertain environment.

Presenting Author: Annie Tangey, PHD Student, The Kirby Institute

• "It's positive- now what?": Developing systems to enable real-time public health action in a large decentralised remote and regional COVID-19 point of care testing program.

Speaker: Andrea Kindinger, Senior Project Officer, The Kirby Institute

Look out for this <u>Poster</u> from the Program:

• Quality assurance testing for SARS-CoV-2 RNA detection in the Aboriginal and Torres Strait Islander COVID-19 Point-of-Care Testing Program (Kelly Andrewartha, Flinders University International Centre For Point-of-Care Testing, SA, Australia)

Results 1 - Demographics

		Total	Phase 1	Phase 2	Phase 3
Ethnicity					
	Aboriginal and/or Torres Strait Islander	(67.1%)	65.3%	64.2%	75.3%
	Other	32.9%	34.7%	35.8%	24.7%
Age Group					
		13320	5823	4594	2903
	0-17	(19.8%)	(21.8%)	(17.6%)	(20.1%)
		12474	4687	4845	2942
	18-29	(18.5%)	(17.6%)	(18.5%)	(20.4%)
		21848	8342	8771	4735
	30-49	(32.5%)	(31.3%)	(33.5%)	(32.8%)
		17164	6809	7002	3353
	50-69	(25.5%)	(25.5%)	(26.8%)	(23.2%)
		2468	1003		521
	70-99	(3.7%)	(3.8%)	944 (3.6%)	(3.6%)
Gender					
	Female	56.4%	58.2%	52.3%	60.6%
	Male	43.6%	41.8%	47.7%	39.5%