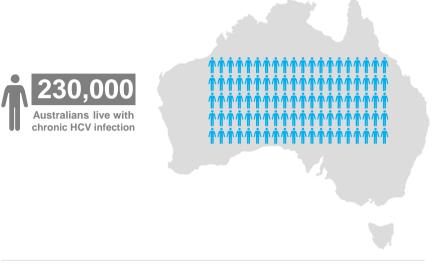


Moving towards HCV elimination in HIV/HCV co-infection in Australia following universal access to interferon-free therapy

<u>Marianne Martinello</u>, Gregory J Dore, Rohan I Bopage, Robert Finlayson, David Baker, Mark Bloch, Ecaterina Filep, Jasmine Skurowski, Lanni Lin, Francois Lamoury, Sofia Bartlett, Tanya Applegate, Margaret Hellard, Gail V Matthews

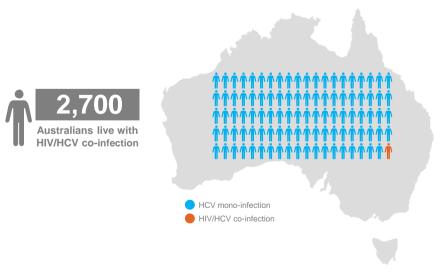
Disclosures


· Dr M Martinello has received speaker payments from Abbvie

Funding:

- The Kirby Institute is funded by the Australian Government Department of Health and Ageing.
- Research reported in this publication was supported by Gilead Sciences Inc and Bristol Myers Squibb as an investigator-initiated study.

3 EUNSW Contribution


Background: Epidemiology of HCV in Australia

The Kirby Institute. Hepatitis B and C in Australia Annual Surveillance Report Supplement 2016

4 EUNSW CALLON

Background: Epidemiology of HCV in Australia

The Kirby Institute. Hepatitis B and C in Australia Annual Surveillance Report Supplement 2016

Background: Epidemiology of HCV in Australia

In support of HCV elimination among people living with HIV in Australia:

Population size
High proportion diagnosed with HIV (90%)
High proportion with HIV linked to care (85%)
Universal access to DAA therapy

6

Objectives

- · To evaluate:
 - HCV treatment uptake and outcomes among people with HIV/HCV co-infection following the availability of DAA therapy
 - Factors associated with DAA uptake in 2016

Methodology

© CEASE

Study design

CEASE-D: Observational cohort study

Eligibility

- ≥18 years
- HIV infection
- Past (HCV Ab +ve, RNA -ve) or current (HCV Ab +ve, RNA +ve) HCV infection
- Participants enrolled between 1 July 2014 and 31 Dec 2016 (n=390)

Methodology

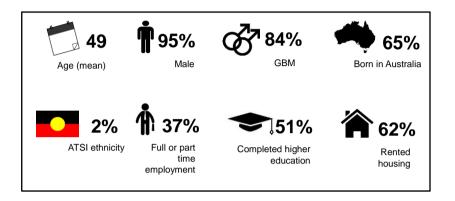
HCV treatment uptake (censored 31 Dec 2016)

Participants with spontaneous clearance excluded, n=23

- Cumulative: The proportion of individuals with chronic HCV who ever initiated treatment.
- Annual (2014-2016): The proportion of individuals with chronic HCV who initiated treatment per year.

Treatment outcome was assessed as follows:

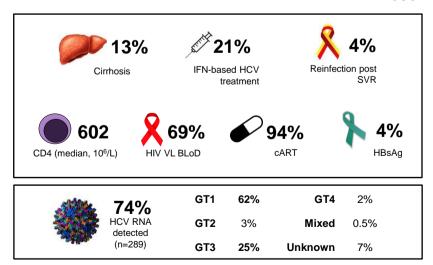
- SVR12 (HCV RNA <LLoQ at PT week 12)
- Virologic failure (HCV RNA >LLoQ at PT week 12)
 - Non-response, breakthrough or relapse
- Non-virologic failure (death, LTFU or missing HCV RNA)


Factors associated with DAA uptake in 2016

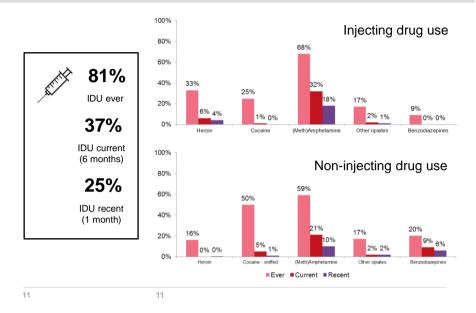
- Population: Treatment eligible participants (HCV RNA +ve)
- · Logistic regression analysis.

Results: Enrolment demographics

N=390

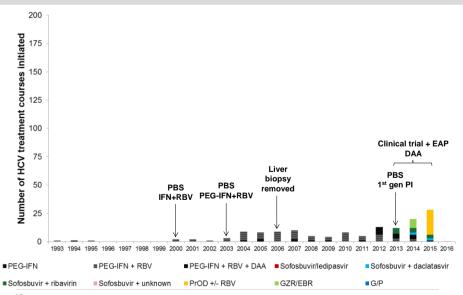


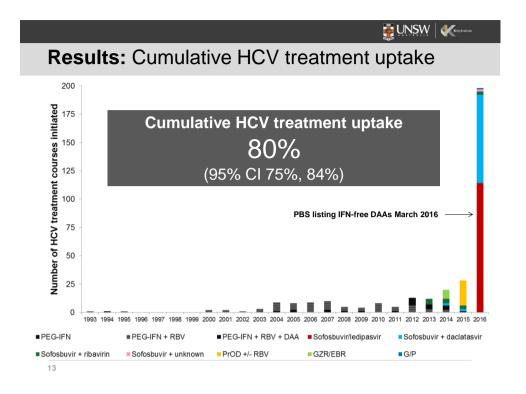
9

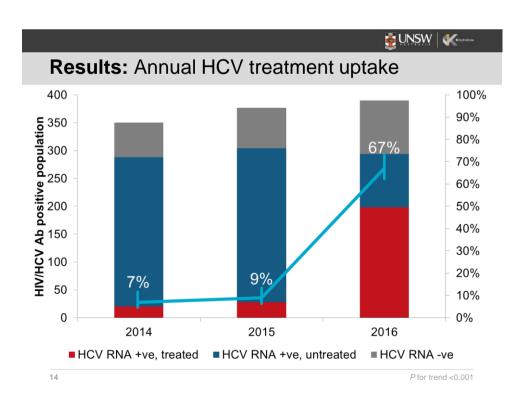


Results: Clinical and virological characteristics

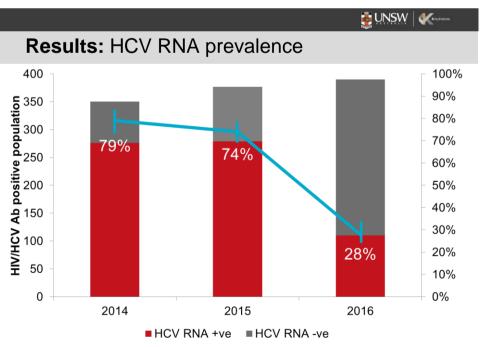
N=390







Results: Cumulative HCV treatment uptake



Results: HCV treatment outcome (2014 - 2016)

	2014	2015	2016
HIV/HCV Ab positive	350	377	390
Eligible for HCV treatment (RNA +ve)	288	304	294
Commenced HCV treatment	20	28	198
Treatment uptake (95% CI)	7% (4%, 11%)	9% (6%, 13%)	67% (62%, 73%)
HCV treatment outcome			
SVR12	14 (70%)	25 (89%)	182 (92%)
Virologic failure	5 (25%)	2 (7%)	4 (2%)
Non-response	2		
Relapse	3	2	4
Non-virologic failure	1 (5%)	1 (4%)	12 (6%)
Death			1
LTFU	1	1	6
Missing HCV RNA			5
Reinfection post SVR	2	1	0

15

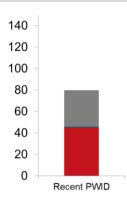
*Extrapolated RNA prevalence at end of calendar year; P for trend <0.0001

Results: DAA uptake in 2016 – logistic regression analysis

Clinical and demographic variables	DAA treatment N=198	No DAA treatment N=96	OR (95% CI)	Р	aOR (95% CI)	Р
Age (per 10 years)	49 (10)	46 (10)	1.31 (1.01, 1.69)	0.040	1.28 (0.99, 1.66)	0.061
Injecting drug use – last 1 month	46 (23)	34 (35)	0.55 (0.32, 0.94)	0.029	0.58 (0.33, 0.99)	0.044

*Variables not associated with DAA uptake included gender, sexual identity, enrolment site, education level, income, housing, prior interferon-based HCV treatment, cirrhosis, IDU (ever)

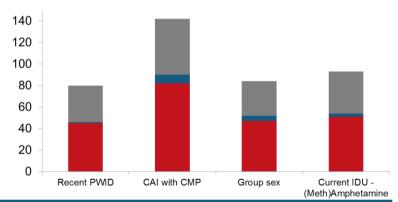
17


Results: DAA uptake in 2016 among GBM – logistic regression analysis

Clinical and demographic variables	DAA treatment N=164	No DAA treatment N=79	OR (95% CI)	Р
Age (per 10 years)	49 (10)	47 (46)	1.33 (1.00, 1.76)	0.051
Injecting drug use – last 1 month	39 (24)	30 (38)	0.51 (0.29, 0.91)	0.023
Casual male partner/s - last 6 months	103 (63)	57 (72)	0.65 (0.33, 1.26)	0.202
Condom-less anal intercourse with casual male partner/s – last 6 months	90 (55)	52 (66)	0.63 (0.34, 1.16)	0.140
Group sex – last 6 months	52 (32)	32 (41)	0.68 (0.39, 1.19)	0.178

*Variables not associated with DAA uptake included enrolment site, education level, income, housing, prior interferonbased HCV treatment, cirrhosis, IDU (ever)

Results: DAA uptake and outcomes in "high risk" sub-populations in 2016

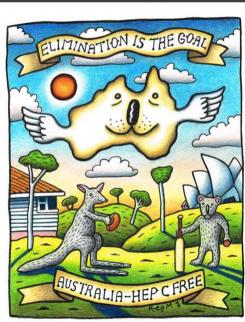


	PWID
DAA uptake	58%
SVR12	98%

19

UNSW Krojinilos

Results: DAA uptake and outcomes in "high risk" sub-populations in 2016


	PWID		GBM	
DAA uptake	58%	63%	62%	58%
SVR12	98%	91%	90%	94%

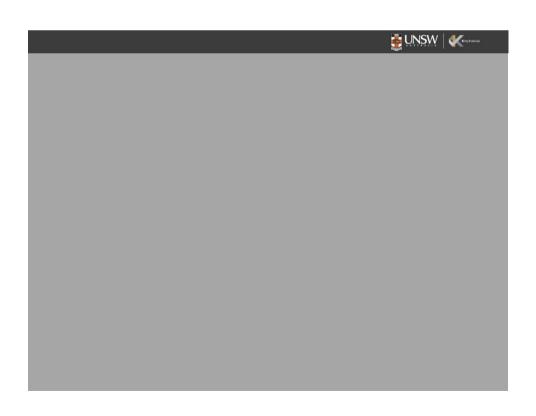
Conclusion

- Broad government-subsidised access to DAA therapy has permitted rapid HCV treatment scale-up, with substantial uptake among people living with HIV/HCV co-infection
- A high rate of HIV/HCV diagnosis, universal access to DAA therapy and high treatment efficacy should establish a foundation for achieving WHO HCV elimination targets in this population.
 - · Need to ensure equitable access to HCV treatment
- Ongoing HCV elimination strategies will require:
 - Monitoring of DAA treatment uptake and outcomes
 - Monitoring of HCV RNA prevalence and incidence (primary and reinfection)
 - · Screening for and treatment of HCV reinfection
 - Access to harm reduction services and education

Acknowledgements

The Kirby Institute, UNSW Australia:


- · A/Prof Gail Matthews
- · Prof Greg Dore
- Dr Tanya Applegate
- Dr Francois Lamoury
- Ms Lanni Lin
- · Dr Jasmine Skurowski
- Ms Ecaterina Filep
- Ms Pip Marks


Burnet Institute:

- · Prof Margaret Hellard
- · Dr Joseph Doyle
- · CEASE Protocol Steering Committee
- · Site investigators and coordinators
- · Participants and their families

WHO Global Hepatitis Report, 2017

UN/WHO, May 2016:

Elimination of viral hepatitis as a public health threat by 2030.

- Reduction HCV incidence: 80%
- Reduction in HCV-related mortality: 65%

Global Hepatitis Report 2017. Geneva: World Health Organization; 2017.

Background: Elimination vs eradication

Elimination: Reduction in infection incidence to zero in a defined geographical area as a result of deliberate efforts; continued measures to prevent transmission required

Examples: measles, poliomyelitis

Eradication: Permanent reduction of worldwide infection incidence to zero as a result of deliberate efforts; intervention measures are no longer needed

Example: smallpox

Incidence of HCV (general population), 2015

1.75 million new infections in 2015

		Incidence of HCV infection					
WHO region	Map key	Incidence rate (per 100 000)		Total number (000)			
		Best estimate	Uncertainty interval	Best estimate	Uncertainty interval		
African Region	•	31.0	22.5-54.4	309	222-544		
Region of the Americas		6.4	5.9-7.0	63	59-69		
Eastern Mediterranean Region		62.5	55.6-65.2	409	363-426		
European Region		61.8	50.3-66.0	565	460-603		
South-East Asia Region	-	14.8	12.5-26.9	287	243-524		
Western Pacific Region		6.0	5.6-6.6	111	104-124		
Global		23.7	21.3-28.7	1 751	1 572-2 120		

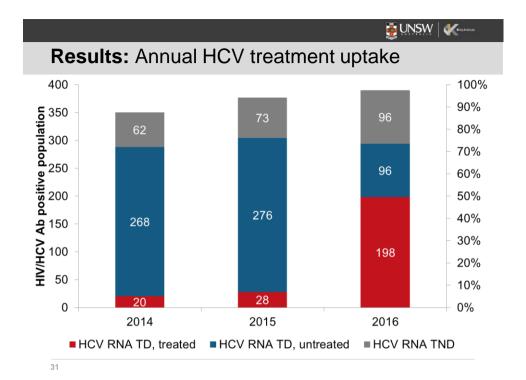
Global Hepatitis Report 2017. Geneva: World Health Organization; 2017.

8 **- September 1988**

Country-specific HCV elimination programs

		Estimated HCV epidemic measure in:					
	Treatment scale-up		2016				
Country	commence ment year	HCV- infected population	Proportion diagnosed with HCV	Treatment uptake (per year)	Treatment uptake (per year)		
Australia	2016	230 000	75%	1-2%	14%		
Egypt	2014	6 080 000	21%	<1%			
Georgia	2015	250 000	6%	<1%	4-10%		
France	2016	196 000	70%	5%			
Iceland	2016	1 000	82%	3%	41-51%		
Mongolia	2016	150 000	30%	<1%	5%		
Portugal	2015	100 000	35%	<1%			

Background: PBS listing of HCV DAAs March 2016


- DAA therapy for all Australians ≥18 years with chronic HCV
- No liver disease stage, or drug and alcohol restrictions
- Broad practitioner base (including GPs) with public hospital (S100) and community pharmacy (S85) dispensing

Date listed	Generic name	Genotype	Duration (weeks)
	Sofosbuvir/Ledipasvir	1	8-24
March 2016	Sofosbuvir + Daclatasvir	1, 3	12-24
March 2016	Sofosbuvir + Ribavirin	2	12
	Sofosbuvir + Peg-IFN + Ribavirin	1, 3, 4-6	12
May 2016	Paritaprevir/Ritonavir/Ombitasvir + Dasabuvir +/- Ribavirin	1	12-24
Jan 2017	Grazoprevir/elbasvir	1, 4	12-16
August 2017	Sofosbuvir/velpatasvir	1-6	12

Results: Sexual behaviour in GBM

	GBM N=326
Regular male partner	112 (34%)
HIV Ab positive	68 (61%)
HCV Ab positive	16 (14%)
Casual male partner/s in last 6 months	207 (63%)
Condom-less anal intercourse with CMP in last 6 months	177 (54%)
Group sex last 6 months	103 (32%)
Disclose HIV status with casual male partner/s – "never"	27 (13%)
Disclose HCV status with casual male partner/s – "never"	94 (45%)

