Evaluating the impact and cost-effectiveness of chlamydia management strategies in Hong Kong: a modelling study

Ong JJ^{3,4,9},Montes-Olivas S¹, Homer M¹, Turner K^{2,3}, Fairley CK^{4,5}, Hocking JS⁶, Tse D⁷, Verschueren van Rees N⁸, Wong WCW⁷,

¹Department of Engineering Mathematics, University of Bristol, Bristol, U.K., ²University of Bristol Veterinary School, Langford House, Langford, Bristol, United Kingdom, ³University of Bristol Medical School, Population Health Sciences, Bristol, United Kingdom, ⁴Central Clinical School, Faculty of Medicine, Monash University, Melbourne, Australia, ⁵Melbourne Sexual Health Centre, Alfred Health, Melbourne, Australia, ⁶Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia, ⁷Department of Family Medicine and Primary Care, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, ⁸Physics Department, University of California at Berkeley, Berkeley, United States of America, ⁹Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, United Kingdom

Background: Discussions for chlamydia control have shifted from population-based screening towards strengthening patient management. We aimed to illustrate the epidemiologic and cost-effectiveness impact of shifting from population-based screening towards a targeted management approach for genital chlamydia infection.

Methods: We constructed an individual-based, stochastic, dynamic network model for chlalmydia based on Hong Kong's sexually active population of reproductive age (age 18-49 years). We evaluated the change of chlamydia prevalence before and after implementing the different implementations of universal vs. targeted screening. We also explored the impact of [1] screening only, [2] screening plus expedited partner therapy, and [3] screening plus partner testing. The cost-effectiveness analysis reports total direct cost from a health provider perspective, the QALYs gained, and incremental cost-effectiveness ratios (ICER).

Results: In comparing the effects of universal screening only and targeted screening of the high-risk population, the mean prevalence during the tenth year of intervention was $2.75 \pm 0.30\%$ and $2.35 \pm 0.21\%$, respectively (compared with $3.24 \pm 0.30\%$ and $3.35 \pm 0.21\%$ before the interventions, respectively). The addition of contact tracing to the latter targeted screening scenario reduces the mean prevalence during the tenth year of intervention to $1.48 \pm 0.13\%$ (compared with $3.31 \pm 0.33\%$ at baseline) in the best-case of testing before treatment and maximal contact-tracing effectiveness (40%). Overall, the most effective scenarios were those for which interventions focused on the high-risk population defined by the number of partners, with contact tracing included. The ICER for targeted screening with contact tracing at 20% and 40% efficiency was \$4,634 and \$7,219 per QALY gained, respectively (10-year time horizon). Expedited partner therapy did not significantly impact overall chlamydia prevalence and caused overtreatment.

Conclusion: Our study suggests that targeted screening with strengthened contact tracing efforts is the most cost-effective strategy to reduce the prevalence of chlamydia in Hong Kong.

Disclosure of Interest Statement: No conflicts of interest to declare