Using data linkage to better understand progress toward hepatitis elimination targets

30th May 2021 Jennifer MacLachlan WHO Collaborating Centre for Viral Hepatitis, The Doherty Institute

jennifer.maclachlan@mh.org.au

A joint venture between The University of Melbourne and The Royal Melbourne Hospita

Acknowledgements

- Acknowledgement of Country
- Funding support from Royal Melbourne Hospital, Victorian Cancer Agency
- Our data linkage work is conducted in partnership with the Victorian Government Department of Health
- Project collaborators (Benjamin Cowie, Stacey Rowe, Nicole Allard) and team (Kathryn Snow, Chelsea Brown, George Mnatzaganian, Nicole Romero, Anna Deng)
- Work conducted by other research groups

Overview

- Overview of key indicators for evaluation of achieving targets
- Key global and Australian targets
- How data linkage can be used to monitor epidemiology, burden, and uptake
- Future data linkage for better surveillance of elimination progress
- Summary

The goal

GLOBAL VISION

A world where viral hepatitis transmission is halted and everyone living with viral hepatitis has access to safe, affordable and effective prevention, care and treatment services.

The Peter Doherty Institute for Infection and Immunity A joint venture between The University of Melbourne and The Royal Melbourne Hospital

WHO Global Health Sector Strategy 2016-2021

Key indicators

Service indicators

Treatment

Immunisation

Impact indicators

Reduce new infections

Reduce adverse outcomes

The Peter Doherty Institute for Infection and Immunity A joint venture between The University of Melbourne and The Royal Melbourne Hospital

Key targets - service

		Measure/s	National target, 2022	Global target, 2030
	Hepatitis B immunisation	Infant coverage Birth dose coverage	95% -	90%
j :	Diagnosis	Proportion diagnosed HCV Proportion diagnosed HBV	90% 80%	90%
	Care and monitoring	Proportion in care HBV	50%	-
	Treatment	Proportion receiving treatment HBV Proportion cured HCV	20% 65%	80%

Key targets - impact

	Measure/s	National target, 2022	Global target, 2030
Incidence	New cases of chronic infection B/C Newly acquired infection B/C	- 50% / 60%	90% -
Mortality	Reduction in mortality hepatitis B Reduction in mortality hepatitis C	30% 65%	65%
Stigma	Reported experience of stigma		_

The Peter Doherty Institute for Infection and Immunity A joint venture between The University of Melbourne and The Royal Melbourne Hospital

Data linkage – overview

"The bringing together from two or more different sources, data that relate to the same individual, family, place or event"

- Combining separately held datasets to increase the utility of each one
- Validation of accuracy of routinely collected datasets
- Provide a more complete picture of a person's healthcare journey and the impacts of viral hepatitis on outcomes

DIAGNOSIS

Positive test notified to heath department Notifiable diseases datasets

DIAGNOSIS **ENROLLED IN CARE / TREATMENT** Positive test notified to heath department Received subsidised items (testing, Notifiable diseases datasets imaging, appointments, treatments) Medicare (MBS and PBS) Figure 5. The continuum of viral hepatitis services and the retention cascade VIRAL HEPATITIS CASCADE 6 1 ($\langle \rangle$ ALL PEOPLE PEOPLE AWARE OF ENROLLED ON RETAINED VIRAL LOAD ACCESSING PEOPLE **REACHED BY** TESTED STATUS IN CARE TREATMENT ON SUPPESSED CHRONIC CARE PREVENTION TREATMENT ACTIVITIES CONTINUUM OF SERVICES TREATMENT

DIAGNOSIS **ENROLLED IN CARE / TREATMENT** Positive test notified to heath department Received subsidised items (testing, Notifiable diseases datasets imaging, appointments, treatments) Medicare (MBS and PBS) Figure 5. The continuum of viral hepatitis services and the retention cascade **PRIORITY POPULATIONS** VIRAL HEPATITIS CASCADE **Receiving OAT OAT** registries Born overseas, Aboriginal and/or Torres Strait Islander Hospital presentations / admissions (7) S 6 (iii) $\langle \rangle$ History of incarceration PEOPLE VIRAL LOAD ALL AWARE OF ENROLLED ON RETAINED ACCESSING PEOPLE **REACHED BY** TESTED STATUS IN CARE TREATMENT ON SUPPESSED CHRONIC Corrections CARE PREVENTION TREATMENT ACTIVITIES CONTINUUM OF SERVICES CHRONIC TREATMENT

DIAGNOSIS

ENROLLED IN CARE / TREATMENT Positive test notified to heath department Received subsidised items (testing, Notifiable diseases datasets imaging, appointments, treatments) Medicare (MBS and PBS) Figure 5. The continuum of viral hepatitis services and the retention cascade VIRAL HEPATITIS CASCADE (7) S) $(\mathbf{0})$ 6 (iii) $\langle \rangle$ PEOPLE PEOPLE AWARE OF ACCESSING ALL ENROLLED ON RETAINED VIRAL LOAD PEOPLE REACHEDBY TESTED STATUS IN CARE TREATMENT ON SUPPESSED CHRONIC CARE PREVENTION TREATMENT ACTIVITIES CONTINUUM OF SERVICES TREATMENT

ADVERSE OUTCOMES Diagnosed with liver cancer Cancer registry

Hospitalised with complications Hospital presentations / admissions

Died Death registry

PRIORITY POPULATIONS

Receiving OAT OAT registries

Born overseas, Aboriginal and/or Torres Strait Islander Hospital presentations / admissions

History of incarceration *Corrections*

DIAGNOSIS

Overseen by human research ethics (national and local)

ENROLLED IN CARE / TREATMENT Positive test notified to heath department Received subsidised items (testing, Notifiable diseases datasets imaging, appointments, treatments) Medicare (MBS and PBS) Figure 5. The continuum of viral hepatitis services and the retention cascade **PRIORITY POPULATIONS** VIRAL HEPATITIS CASCADE Receiving OAT Cancer registry OAT registries Hospitalised with Born overseas, Aboriginal complications and/or Torres Strait Islander admissions Hospital presentations / admissions (7) $(\mathbf{0})$ 6 (iii) (P) Died History of incarceration Death registry PEOPLE PEOPLE AWARE OF ALL ENROLLED ON RETAINED VIRAL LOAD ACCESSING PEOPLE REACHEDBY TESTED STATUS IN CARE TREATMENT ON SUPPESSED CHRONIC Corrections CARE PREVENTION TREATMENT ACTIVITIES CONTINUUM OF SERVICES TREATMENT

ADVERSE OUTCOMES Diagnosed with liver cancer

Hospital presentations /

Data linkage – what can it tell us?

- Establish burden attributable to viral hepatitis and disparities according to priority population
- Validation of modelling and other methodologies
- Tracking individual-level cascades of care and trends over time
- Identification of missed opportunities
- Measure impacts on attributable morbidity and mortality

Establishing burden and disparities

 Linkage of notified cases of hepatitis B and C to cancer registry and death records in NSW

Cancer incidence in people with hepatitis B or C infection: A large community-based linkage study

Janaki Amin^{1,*}, Gregory J. Dore¹, Dianne L. O'Connell², Mark Bartlett³, Elizabeth Tracey⁴, John M. Kaldor¹. Matthew G. Law¹ Journal of Hepatology 45 (2006) 197–203

Causes of death after diagnosis of hepatitis B or hepatitis C infection: a large community-based linkage study

Janaki Amin, Matthew G Law, Mark Bartlett, John M Kaldor, Gregory J Dore

Lancet 2006; 368: 938–45

 Demonstrating people with hepatitis B and C have substantially higher risks of liver-related death and liver cancer

Establishing burden and disparities

 Linkage of notified cases of hepatitis B and C to cancer registry and death records in NSW

Cancer incidence in people with hepatitis B or C infection: A large community-based linkage study

Janaki Amin^{1,*}, Gregory J. Dore¹, Dianne L. O'Connell², Mark Bartlett³, Elizabeth Tracey⁴, John M. Kaldor¹. Matthew G. Law¹ Journal of Hepatology 45 (2006) 197–203

Causes of death after diagnosis of hepatitis B or hepatitis C infection: a large community-based linkage study

Janaki Amin, Matthew G Law, Mark Bartlett, John M Kaldor, Gregory J Dore

Lancet 2006; 368: 938-45

 Demonstrating people with hepatitis B and C have substantially higher risks of liver-related death and liver cancer Table 1: Region of birth^a for hepatocellular carcinomas (ICD 22.0) reported to the NSW Central Cancer Registry and by hepatitis linkage status, 1990-2002.

		All H	CC		HBV		HCV		HBV+HCV		Unlink	ed
	n=2072	Crude rate/ 100,000	RR	95% CI	n=323	%	n=267	%	n=18	%	n=1,464	%
Australia	983	1.61	1.00		20	6.2	62	23.2	3	16.7	898	61.3
Other Oceania	40	2.09	1.30	0.95-1.78	15	4.6	2	0.7	1	5.6	22	1.5
New Zealand	15	1.15	0.71	0.43-1.19	2	0.6	2	0.7	1	5.6	10	0.7
Europe	407	4.37	2.72	2.42-3.05	43	13.3	85	31.8	4	22.2	275	18.8
Italy	104	11.19	6.96	5.69-8.52	14	4.3	30	11.2	2	11.1	58	4.0
United Kingdom	101	2.43	1.51	1.23-1.85	1	0.3	13	4.9	-	-	87	5.9
Former Yugoslavia	35	3.89	2.42	1.73-3.39	9	2.8	7	2.6	-	-	19	1.3
Greece	33	5.56	3.46	2.45-4.89	6	1.9	4	1.5	-	-	23	1.6
Germany	16	3.48	2.17	1.32-3.55	1	0.3	3	1.1	-	-	12	0.8
Hungary	13	9.48	5.90	3.41-10.19	2	0.6	6	2.2	-	-	5	0.3
Romania	11	21.86	13.60	7.51-24.64	1	0.3	4	1.5	1	5.6	5	0.3
Poland	10	3.83	2.38	1.28-4.44	1	0.3	3	1.1	-	-	6	0.4
Middle East/Nth Afric	a 50	2.87	1.78	1.34-2.37	7	2.2	10	3.7	-	-	33	2.3
Egypt	30	11.87	7.38	5.13-10.62	2	0.6	9	3.4	-	-	19	1.3
Lebanon	10	1.31	0.81	0.44-1.52	4	1.2	1	0.4	-	-	5	0.3
Asia	518	9.93	6.18	5.55-6.87	222	68.7	95	35.6	8	44.4	193	13.2
Vietnam	151	18.61	11.58	9.75-13.74	59	18.3	41	15.4	4	22.2	47	3.2
China and Taiwan	161	16.01	9.96	8.43-11.76	81	25.1	19	7.1	-	-	61	4.2
Korea	36	11.63	7.24	5.19-10.09	18	5.6	6	2.2	-	-	12	0.8
Hong Kong	26	4.93	3.07	2.08-4.53	17	5.3	-	-	-	-	9	0.6
Indonesia	25	9.93	6.17	4.15-9.18	3	0.9	10	3.7	-	-	12	0.8
Cambodia	20	15.63	9.72	6.25-15.14	10	3.1	2	0.7	1	5.6	7	0.5
Philippines	19	2.92	1.82	1.15-2.86	4	1.2	5	1.9	1	5.6	9	0.6
India	15	3.65	2.27	1.36-3.78	5	1.5	3	1.1	-	-	7	0.5
Malaysia	14	4.69	2.92	1.72-4.94	11	3.4	6	2.2	-	-	3	0.2
Sri Lanka	10	5.02	3.12	1.68-5.82	-	-	-	-	-	-	10	0.7
Thailand	10	9.16	5.70	3.06-10.62	7	2.2	1	0.4	1	5.6	1	0.1
Americas	15	1.58	0.98	0.59-1.64	1	0.3	2	0.7	-	-	12	0.8
Other Africa	9	1.68	1.05	0.54-2.02	1	0.3	1	0.4	-	-	7	0.5

Amin 2007 ANZJPH

Establishing burden and disparities

- Linkage of notified cases of hepatitis B and C to cancer registry and death records in VIC
- Burden of attributable liver cancer not evenly distributed according to region

Doherty Institute / DH Victoria Linkage project

• Internal linkage of MBS and PBS data, and unique identifiers for individuals

Figure A.2: CHB monitoring in Australia, 2018

People living with CHB Have ever had a viral load test 45.2% Had a recent viral load test 36.8% (in the last five years) Had a viral load test in the last year 19.1% Had regular viral load tests (approx. 10.9% every year for the last five years) 0 50,000 100,000 150,000 200,000 250.000 Number of people living with CHB

TARGET: Increase hepatitis B care

• Internal linkage of MBS and PBS data, and unique identifiers for individuals

People living with CHB Have ever had a viral load test 45.2% Had a recent viral load test 36.8% (in the last five years) Had a viral load test in the last year 19.1% Had regular viral load tests (approx. 10.9% every year for the last five years) 0 50,000 100,000 150,000 200,000 250.000 Number of people living with CHB

TARGET: Increase hepatitis B care

Figure A.2: CHB monitoring in Australia, 2018

• Internal linkage of MBS and PBS data, and unique identifiers for individuals

Figure A.2: CHB monitoring in Australia, 2018

People living with CHB Have ever had a viral load test 45.2% Had a recent viral load test 36.8% (in the last five years) Had a viral load test in the last year 19.1% Had regular viral load tests (approx. 10.9% every year for the last five years) 0 50,000 100,000 150,000 200,000 250.000 Number of people living with CHB

TARGET: Increase hepatitis B care

• Internal linkage of MBS and PBS data, and unique identifiers for individuals

Figure A.2: CHB monitoring in Australia, 2018

People living with CHB Have ever had a viral load test 45.2% Had a recent viral load test 36.8% (in the last five years) Had a viral load test in the last year 19.1% Had regular viral load tests (approx. 10.9% every year for the last five years) 0 50,000 100,000 150,000 200,000 250.000 Number of people living with CHB

TARGET: Increase hepatitis B care

• Linkage of notifications with MBS and PBS, deaths

TARGET: Increase hepatitis B care

- Linkage of notifications with MBS and PBS, deaths
- Priority gaps in cascade; variations according to priority populations

TARGET: Increase hepatitis C treatment

Doherty Institute / DH Victoria Linkage project

The Peter Doherty Institute for Infection and Immunity A joint venture between The University of Melbourne and The Royal Melbourne Hospital

Missed opportunities for care

• Among people diagnosed with viral hepatitis too late to intervene (<2 years prior to a liver cancer or death), most had health care

Missed opportunity	HBV late diagnosis	%	HCV late diagnosis	%
GP consultations	142	88%	302	95%
Specialist consultations	100	62%	185	58%
Blood draws	114	70%	233	73%
ED presentations	85	52%	216	68%
Hospital admissions	95	59%	208	65%
Any missed opportunity	146	90%	306	96%
ED presentations Hospital admissions	85 95	52% 59%	216 208	68% 65%

TARGET: Increase hepatitis C treatment, Increase hepatitis B care

Doherty Institute / DH Victoria Linkage project

The Peter Doherty Institute for Infection and Immunity A joint venture between The University of Melbourne and The Royal Melbourne Hospital

Missed opportunities for care

• Among people diagnosed with viral hepatitis too late to intervene (<2 years prior to a liver cancer or death), most had health care

	Missed opportunity	HBV late diagnosis	%	HCV late diagnosis	%
	GP consultations	142	88%	302	95%
	Specialist consultations	100	62%	185	58%
	Blood draws	114	70%	233	73%
	ED presentations	85	52%	216	68%
	Hospital admissions	95	59%	208	65%
	Any missed opportunity	146	90%	306	96%
ssec	d opportunity	Mean	Median	IQR	Range
cor	nsultations	54.63	33	14-82	1-321
ecia	list consultations	14.15	6	2-19.5	1-80
od	draws	11.85	6	3-14	1-103
pre	sentations	5.18	3	1-5	1-107
Hospital admissions		6.82	3	2-7	1-97
isseo	d opportunity	Mean	Median	IQR	Range
o cor	nsultations	51.88	33	14-67	1-585
Specialist consultations		9.68	4	1-11	1-169
Blood draws		9.53	4	2-10	1-214
pre	sentations	7.03	3	1-6	1-318
Hospital admissions		12.68	3	1-6	1-1212

TARGET: Increase hepatitis C treatment, Increase hepatitis B care

HBV

HCV

Doherty Institute / DH Victoria Linkage project

Focus on priority populations

• Linkage of notifications with hospital admissions, deaths, incarceration, HIV notifications, PBS, and OAT authority data

TARGET: Increase hepatitis C treatment, Reduce incidence

Valerio JHep 2020

Focus on priority populations

• Linkage of notifications with hospital admissions, deaths, incarceration, HIV notifications, PBS, and OAT authority data

TARGET: Increase hepatitis C treatment, Reduce incidence

Valerio JHep 2020

Fig. 4. Impact of direct-acting antiviral therapy on numbers of decompensated cirrhosis and hepatocellular carcinoma diagnoses. Data from individuals with an HCV notification in New South Wales, 2001–2017 (n = 99,910). (A) Decompensated cirrhosis diagnoses and (B) hepatocellular carcinoma diagnoses. Segmented Poisson regression models, fitting a second time trend parameter using splines, were used to evaluate the effect of the DAA therapy era on the numbers of decompensated cirrhosis and hepatocellular carcinoma diagnoses. DAA, direct-acting antiviral; HCV, hepatitis C virus. (This figure appears in colour on the web.)

Alavi 2019 JHep

Future data linkage

- Addition of further datasets particularly primary care
- Expansion to other jurisdictions to broaden view of population ensure coverage of all people living with viral hepatitis
- More responsive, rapid processes living linked datasets allowing for more rapid evaluation of progress

The Peter Doherty Institute for Infection and Immunity A joint venture between The University of Melbourne and The Royal Melbourne Hospital

Take home messages

- Data linkage provides essential additional information to assess progress toward targets:
 - Identifying disparities in access and progress
 - Informing about potential intervention points to address gaps in indicators
- Expanding coverage and more responsive processes will be essential to support the move toward elimination of viral hepatitis as a public health concern

Data linkage at AVHC 2021

Virtual on demand session: Using data linkage to better understand progress towards viral elimination targets Maryam Alavi, UNSW; Stephen Lambert, University of QLD; Kelly Hosking, Menzies NT

Virtual on demand abstracts:

#102 Evaluation of the HCV Cascade of Care Among People with HIV/Hepatitis C Co-Infection in New South Wales, Australia: A Data Linkage Study

Samira Hosseini-Hooshyar, The Kirby Institute, UNSW Sydney, NSW

#112 Opportunities to Enhance Linkage to Hepatitis C Care Among Hospitalised People with Recent Drug Dependence in New South Wales, Australia: A Population-Based Linkage Study
Speaker: Heather Valerio, The Kirby Institute, UNSW Sydney

Live (this afternoon): Data Linkage for Surveillance of Newly Acquired Hepatitis C Infections in Queensland: Early Findings and Implications for Policy and Practice

Speaker: Damin Si, Queensland Department Of Health, QLD

With thanks

jennifer.maclachlan@mh.org.au

doherty.edu.au

f /DohertyInstitute
 @TheDohertyInst #DohertyInstitute

A joint venture betwee Doherty 1 The Royal Melbourne Hospital

www.doherty.edu.au/whoccvh

WHO Collaborating Centre ofor Viral Hepatitis

Vale Professor Monica Robotin

VIEWPOINT

Preventing primary liver cancer: how well are we faring towards a national hepatitis B strategy?

Monica C Robotin, Jacob George, Rajah Supramaniam, Freddy Sitas and Andrew G Penman

Vorldwide, primary liver cancer is the fifth most common cancer and the third most common cause of cancer-related death. In Australia, it is relatively uncommon, ranking 15th in males and 20th in females.¹ However, the incidence and mortality of primary liver cancer have risen progressively over the past two decades; in New South Wales, primary liver cancer incidence rates have been rising faster than incidence rates of any other internal cancer.²

The Cancer Council NSW's report *Cancer incidence* in *New South* Wales migrants 1991 to 2001 stated that, although immigrants had an overall incidence of cancer commensurate with their proportional representation in the NSW population (24.5%), their rate of primary liver cancer was substantially higher, with 46% of all diagnoses occurring in overseas-born people-³ Standardised incidence ratios for primary liver cancer in men born in Vietnam, Hong Kong and Macau, Korea, Indonesia and China, and in women born in Vietnam and China, vere at least six times those in Australian-born people³ (Box 1). In NSW, liver cancer shows geographic clustering, with rates in western Sydney far exceeding the NSW average (12.1 versus 4.8 cases per 100 000 population).³ Over 80% of primary liver cancer worldwide is attributable to

the effects of chronic infection with hepatitis B or C virus (HBV or HCV).⁵ People with chronic HBV or HCV infection have a 20-fold to 200-fold greater risk than those not infected of developing hepatocellular carcinoma (HCC).^{6,7} (the most common form of primary liver cancer).

mental and the second second

ABSTRACT

- Worldwide, over 80% of primary liver cancers are attributable to chronic infection with hepatitis B or C virus.
- Over the past two decades, primary liver cancer incidence rates have been consistently rising in Australia.
- In New South Wales, the standardised incidence ratios for primary liver cancer in males born in Vietnam, Hong Kong and Macau, Korea, Indonesia and China and in females born in Vietnam and China are 6–12 times those in Australian-born populations.
- The incidence of liver cancer is likely to continue to increase unless a coordinated approach to disease control can be developed.
- Effective programs for chronic hepatitis B management need to link prevention, treatment and care, and enhance opportunities for research and surveillance activities.
- The evidence that suppression of hepatitis B virus replication could limit disease progression needs to inform the development of a public health response.
- Lessons learned in the development of the National Hepatitis C Strategy and the experience of international hepatitis B control programs need to inform this process.

MJA 2008; 188: 363-365

The Peter Doherty Institute for Infection and Immunity A joint venture between The University of Melbourne and The Royal Melbourne Hospital

Indicator: attributable mortality

Positive impact of antiviral therapy on adverse outcomes for hepatitis
 B – but still room to improve

