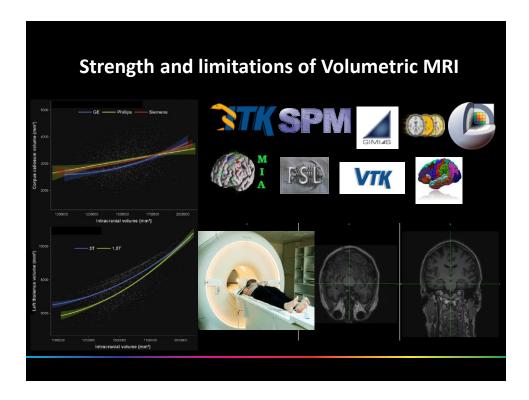
A Lower CD4/CD8 Ratio Is Predictive Of Subcortico-Frontal Brain Atrophy In Virally-Suppressed HIV-Infected Persons

Madeleine J NICHOLS¹, Thomas M GATES², James R SOARES¹, Kirsten J MOFFAT³, Bruce J BREW^{2,4}, Caroline RAE^{1,4}, Lucette A CYSIQUE^{1,2,4}

¹ Neuroscience Research Australia, Sydney, Australia
² Departments of Neurology and HIV Medicine, St Vincent's Hospital and Peter Duncan Neurosciences Unit, St Vincent's Centre for Applied Medical Research, Sydney, Australia
³ Department of Medical Imaging, St Vincent's Hospital, Sydney, Australia
⁴ School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia

Disclosures


- Study funding: NHMRC project grant (APP568746; CIA/PI Cysique) and NHMRC Career Development Fellowship (APP1045400; CIA/PI Cysique), Peter Duncan Neuroscience Unit at the Sydney St. Vincent's Hospital Applied Medical Research Centre (Director: Prof. Brew)
- Dr. Cysique reports a Gilead science fellowship grant, outside the submitted work.

Background

- HIV-related brain damage persists despite viral suppression with cART
- Evidence is based on MRI studies
- However, most studies had limitations so that the magnitude of brain atrophy in virally suppressed HIV+ persons is uncertain and particularly in those with mild neurocognitive impairment
- None extracted a reliable HIV cause to the brain changes except for HIV status difference

23 Volumetric MRI studies in the cART era

- Only 1/23 was conducted in an entirely virally suppressed cohort
- 14/23 included a HIV- control group, five of these were poorly matched for age, sex and education
- Heterogeneity in segmentation softwares and analytic platforms
- Report of prevalence of cases with HIV-associated neurocognitive disorder was not systematic
- Inclusion of key biomarkers relevant to chronic HIV infection was not consistent

Study Aims

- Robustly determine the magnitude and profile of brain atrophy in virally suppressed infection
 - 1. By focusing on an entirely suppressed HIV+ cohort
 - 2. By including demographically-comparable HIV- controls
 - 3. By concentrating on Volumes of Interest (VOI) in specific brain regions known to be affected by HIV including specific WM regions
 - 4. By quantifying the profile of atrophy in participants with mild form of neurocognitive impairment versus those who were neuropsychologically normal (NP normal)
 - 5. By assessing the effects of HIV disease biomarkers on atrophic changes.

Participants' demographics

Table 1: Demographic characteristics of the study samples.

	HIV-	HIV+	p
N	44	85	
Age (years)	53.9 (6.5)	54.9 (6.5)	.42
Range	45-67	45-69	
Male (%)	100	100	-
Education (years)	15.1 (2.7)	14.0 (2.9)	.05
Range	10-20	8-20	
Urban dwelling MSM (%)	84.1	89.3	.39

Note. MSM = men who have sex with men.

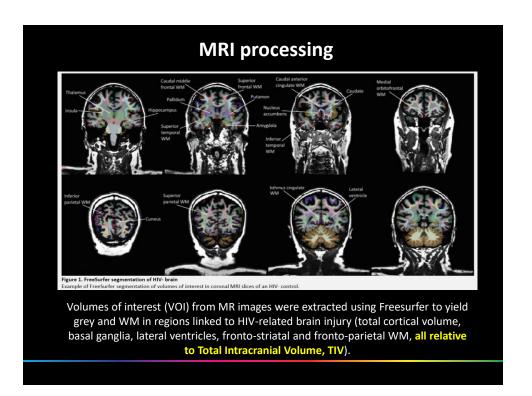
Continuous data presented as Mean (SD) and range unless otherwise specified. Percentage values provided for categorical data

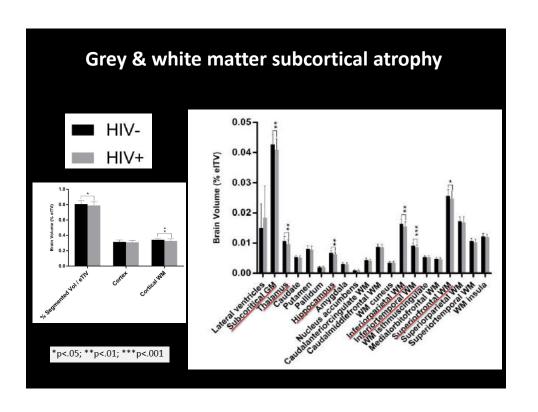
HIV+ participants' clinical characteristics

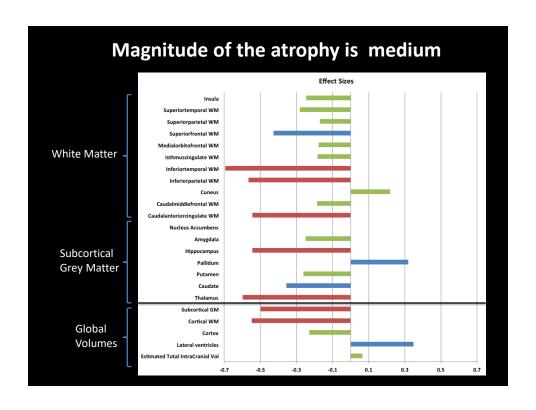
Table 2: Disease characteristics of HIV+ group

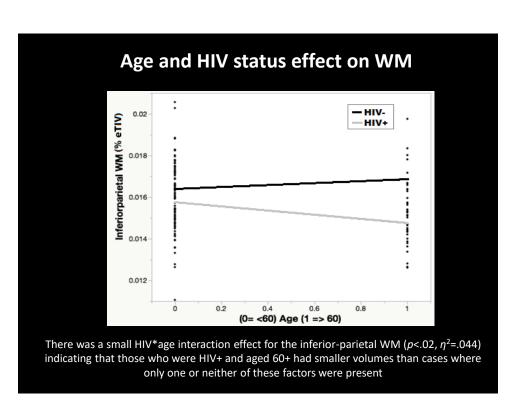
Table 2. Disease characteristics of fire group		
Biomarkers	Median	Range
Median HIV duration (years)	20	4.5-30.6
Median current cART duration (months)	26	6-156
Median nadir CD4 cells/mL	185	0-350
Median current CD4 cells/mL	528	77-1476
CNS Penetration Effectiveness rank score	8 (2.3)	-
Asymptomatic Neurocognitive Impairment (ANI)	38%	-
Mild Neurocognitive Disorder (MND)	13%	-
HIV-associated Dementia (HAD)	3%	-
Historical AIDS (CDC) 1993	71%	-
Plasma HIV RNA undetectable (<50 copies/mL) (%)	98%	-
CSF HIV RNA undetectable CSF (<50 copies/mL) (%) [§]	97%	-

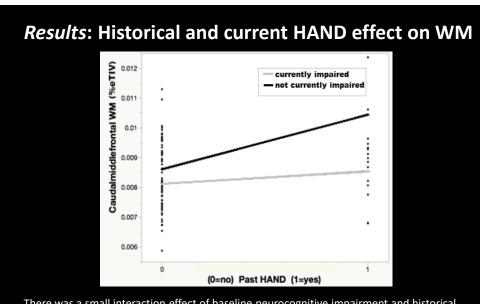
17.6% had a history of HAND

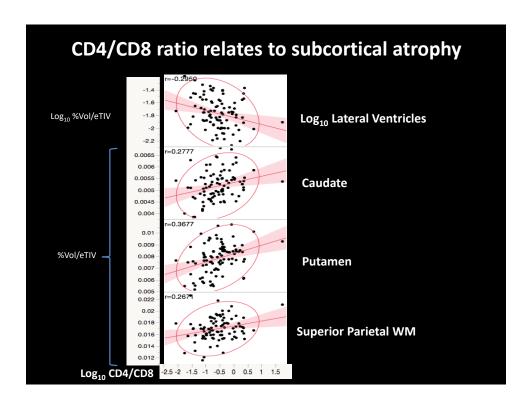

Procedures

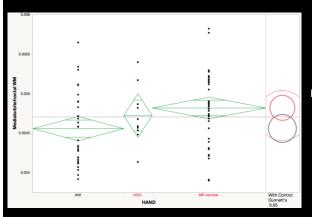

- MRI scans on a Phillips 3T scanner: two 3D T1weighted images & one T2/FLAIR
- Neuropsychological assessment covering 7 cognitive domains, and activities of daily living
- Laboratory Visit


HIV-associated Neurocognitive Disorders (HAND)

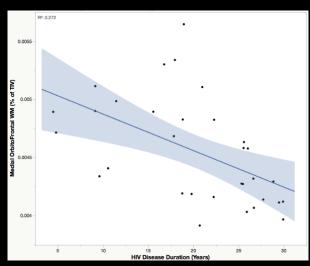

	Acquired Impairment in ≥2 Cognitive Abilities	Interferes with Daily Functioning	
Asymptomatic Neurocognitive Impairment (ANI)	YES	NO]
Mild Neurocognitive Disorder (MND)	YES	MILD	No Dementia
HIV-Associated Dementia (HAD)	MARKED	MARKED	Dementia







There was a small interaction effect of baseline neurocognitive impairment and historical HAND on caudal-middle-frontal WM (p<.05, η^2 =.050) indicating that HIV+ participants with a history of HAND and who were impaired at baseline had smaller caudal-middle-frontal WM volumes than those with only one or neither of these factors were present


Mild neurocognitive impairment atrophic signature

ANI showed reduced medial-orbitofrontal WM compared to NP-normal cases (p=.04, β=-.31).

MND showed enlarged lateral ventricles (p=.02, β =.34), reduced caudal-middle-frontal WM (p=.04, β =-.32), reduced caudal-anterior-cingulate WM (p=.006, β =-.42), and reduced inferior-parietal WM (p=.04, β =-.33) compared to NP-normal cases.

ANI & HIV duration

HIV disease duration uniquely predicted greater medial-orbitofrontal WM atrophy only in ANI (p=.002, β =-.51).

Conclusions

- A history of HAND explains only small degree of the current atrophy suggesting an *ongoing* neuropathogenic process
- CD8 activation in relation to CD4 level associate with grey subcortical and WM atrophy
- ANI is associated with specific frontal WM atrophy. HIV disease duration a unique contributor to ANI related brain atrophy. These findings give neurobiological validity to ANI and may serve as an ANI biomarker.
- · MND atrophic profile was logically more widespread
- Some atrophic volumes had no predictors (e.g., Hippocampus; inferior temporal WM)

Acknowledgements

- We thank the participants for their time
- We thank the MRI team at St. Vincent's Hospital Imaging Department for outstanding services