

Rapid AMR diagnostics via recombinase polymerase amplification – our experiences to date

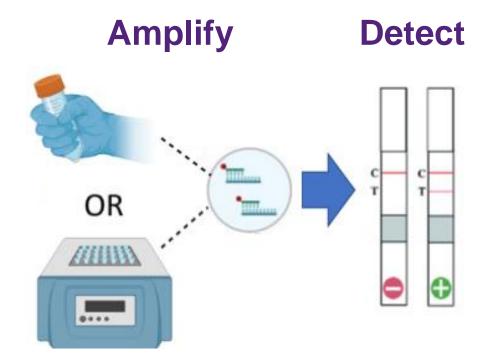
Dr Nicole Ertl

The University of Queensland – Centre for Clinical Research

Background

- Early detection of antimicrobial resistance (AMR):
 - Targeted treatment
- Potential of isothermal amplification tests closer to/at point-of-care
 - Fast turn-around time, sensitive and specific, versatile, easy to carry out and read, no specialised equipment
- Our experiences developing AMR tests using recombinase polymerase amplification (RPA)

Methods


Targets

- Neisseria gonorrhoeae¹
- Ciprofloxacin susceptibility¹
- ESBLs²
- AmpC²
- Carbapenemases

Extract DNA

- E.g.
- Commercial kit
- Boiled preparation
- Rapid extraction reagent

10-30 min

10-15 min 5 min

Time:

1. Ayfan et al. 2022, J Antimicrob Chemother, 77(11):2933-2936; 2. Ertl et al. 2023, JAC Antimicrob Resist, accepted 3

4

Results

Test parameters	N. gonorrhoeae ¹	Ciprofloxacin ¹	ESBLs ²	AmpC ²	Carbapenemases
Diagnostic target(s)	porA	<i>gyrA</i> wildtype	<i>bla</i> _{CTX-M group 1}	bla _{CMY-2}	bla _{KPC}
			bla _{CTX-M group 9}		bla _{IMP}
			J .		bla _{OXA-48}
Amplification temp (°C)	39	39	39	39	39
Detection	lateral flow	lateral flow	lateral flow	lateral flow	lateral flow
Analytical sensitivity					
(copies/reaction)	11.4	247.4	≤ 27.3	3.4	≤ 17.7
Clinical sensitivity (%) ^a	87.5	83.3	100*	100	-
Clinical specificity (%) ^a	-	100	≥ 94.1	100	≥ 97.9
Time to result (min)	15	15	15	15	15-20

^acompared to PCR and/or Sanger sequencing

*only blaCTX-M group 1 clinical sensitivity could be determined

1. Ayfan et al. 2022, J Antimicrob Chemother, 77(11):2933-2936; 2. Ertl et al. 2023, JAC Antimicrob Resist, accepted

- Similar sensitivity and specificity as PCR
- Rapid (sample to result: $\leq 30 \text{ min}$) •
- Easy to adapt
- Easy readout
- No specialised equipment / hand incubation¹

- SNP detection difficult (tolerant to mismatches)
- Increase user friendliness by decreasing number of steps
- Manufacturing issues

Conclusion

- Potential as closer to/at point of care test:
 - Rapid sample to result when coupled with rapid extraction method
 - No specialised equipment or extensive training needed
- Potential to increase testing accessibility in low resource environments and low income countries
- Continue collaborating with industry with aim to take our research into practice

Disclosure of interest

Work was conducted in conjunction with BioCifer Pty Ltd and supported by a Children's Hospital Foundation grant and funded by DMTC. JM is a shareholder and director of BioCifer.

Contact

Dr Nicole Ertl

nicole.ertl@uq.edu.au

Acknowledgements

Dr Jacob Tickner Dr Adam Irwin Mr Abdulrahman Ayfan Dr Brian Forde Ms Michelle Bauer Ms Claire Wang **Dr** Patrick Harris Dr Claire Heney Dr Hosam Zowawi **Prof David Paterson Prof Monica Lahra** A/Prof Joanne Macdonald A/Prof David Whiley Queensland Paediatric Infectious Diseases