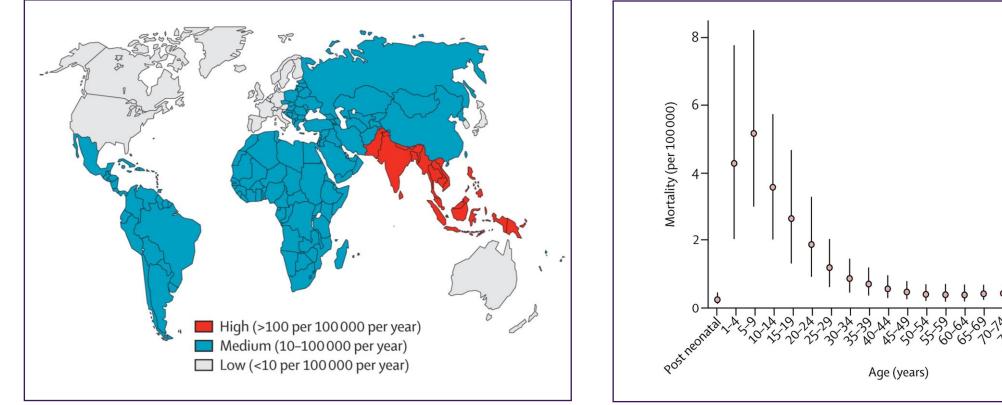


CREATE CHANGE

Rapid molecular diagnostics for extensively drug-resistant (XDR) Salmonella Typhi

Dr Jacob Tickner

Postdoctoral Researcher UQ Centre for Clinical Research Brisbane, QLD, Australia


This project was funded by the Children's Hospital Foundation

Typhoid fever: a global burden

- Widespread dissemination disproportionately affecting children, predominantly in developing countries.
- Up to 30% mortality rate, with recent emergence of extensively-drug resistant (XDR) strains, resistant to almost all antimicrobials.

Geographical distribution of Typhoid fever.

Source: Maurice, J. (2012). A first step in bringing typhoid fever out of the closet. The Lancet, 379:9817, pp 699-700.

Global age-specific mortality rates (per 100 000) from typhoid and paratyphoid fevers in 2017.

Source: GBD 2017 Typhoid and Paratyphoid Collaborators. (2019). The global burden of typhoid and paratyphoid fevers: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet Infectious Diseases, 19:369–81.

Increased transmission of XDR S.Typhi

RESEARCH ARTICLE

Emergence of an Extensively Drug-Resistant Salmonella enterica Serovar Typhi Clone Harboring a Promiscuous Plasmid Encoding Resistance to Fluoroquinolones and Third-Generation Cephalosporins

Elizabeth J. Klemm,^a Sadia Shakoor,^b Andrew J. Page,^a Farah Naz Qamar,^b Kim Judge,^a Dania K. Saeed,^b Vanessa K. Wong,^c Timothy J. Dallman,^d Satheesh Nair,^d Stephen Baker,^{e,f,g} Ghazala Shaheen,^b Shahida Qureshi,^b Mohammad Tahir Yousafzai,^b Muhammad Khalid Saleem,^b Zahra Hasan,^b Gordon Dougan,^{a,c} Rumina Hasan^b

^aWellcome Trust Sanger Institute, Hinxton, United Kingdom
^bThe Aga Khan University, Karachi, Pakistan
^cUniversity of Cambridge Department of Medicine, Cambridge, United Kingdom
^dGastrointestinal Bacteria Reference Unit, National Infection Service, Public Health England, London, United Kingdom
^eThe Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit-Vietnam, Ho Chi Minh City, Vietnam
^fCentre for Tropical Medicine and Global Health, Oxford University, Oxford, United Kingdom
^gFaculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United

Kingdom

Source: Klemm et al. (2018) Emergence of an Extensively Drug-Resistant Salmonella enterica Serovar Typhi Clone Harboring a Promiscuous Plasmid Encoding Resistance to Fluoroquinolones and Third Generation Cephalosporins. mBio 9:e00105-18. https://doi.org/10.1128/mBio.00105-18.

A need for improved S.Typhi diagnostics

Current diagnostic challenges

- Lack of sensitivity and specificity, particularly at the point-of-care¹.
- Conventional blood cultures relatively expensive and can take > 48 hours.
- Invasive infections (bacteraemia) often have low bacterial burden (~1 CFU/ml of blood)²
- Recent emergence of extensive antimicrobial resistance (fluroquinolones and third-gen cephalosporins) means testing unable to identify those at risk of treatment failure.

Improving diagnostic options

- Ideally culture-free with detection directly from patient sample.
- Can be deployed at centralised pathology services right through to point-of-care in low income settings.
- Rapidly (less than a few hours) identify Typhi and guide antimicrobial treatment¹.
- Provide resistance-guided therapy to improve both patient outcomes and antimicrobial stewardship.
- Ultimately, new methods must contribute to reduced morbidity and mortality.

^{1.} Mather, R.G., et al. (2019) Redefining typhoid diagnosis: what would an improved test need to look like? BMJ Global Health 4(5): e001831.

^{2.} Wain, J., et al. (2004) Quantitation of Bacteria in Blood of Typhoid Fever Patients and Relationship between Counts and Clinical Features, Transmissibility, and Antibiotic Resistance Journal of Clinical Microbiology 36(6): pp 1683-1687.

Improving XDR S.Typhi diagnostics

Hypothesis: Molecular assay development will facilitate the rapid detection (in hours) of extensively drug resistant *Salmonella* Typhi and antimicrobial resistance markers, enabling faster patient-centred treatment of *Salmonella* Typhi infections

Aim 1: Design novel molecular detection assays (NAAT) for XDR S. Typhi diagnosis

- Use established (real-time PCR) and emerging (isothermal amplification) detection methods based on DNA amplification and detection.
- Validation of novel molecular assays to determine sensitivity and specificity for XDR S. Typhi detection.

Aim 2: Perform whole genome sequencing of XDR S. Typhi isolates

- Identify any variation or acquisition of AMR determinants.
- Align phenotypic and genotypic data.
- Contribute to the building of a reference genome catalogue of emerging XDR strains.

Novel molecular diagnostics for XDR S. Typhi

We developed three NAA assays for the detection of extensively drug-resistant Salmonella Typhi

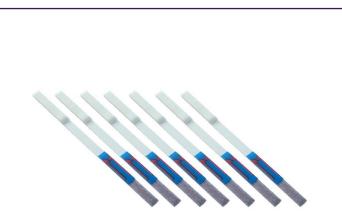
1. Real-time PCR, ABI7500 (ThermoFisher)

<u>Singleplex assays</u>												
Target	Gene/s	Sensitivity	Specificity									
Typhi	STY4669	100%	100%									
Typhi	fliC	100%	100%									
Typhi H58	STY1507-08	100%	100%									
AMR	blaCTX-M-15	90%	100%									
AMR	qnrS1	100%	98%									
Multiplex (triplex) assay												
Target	Gene/s	Sensitivity	Specificity									
Typhi	STY4669	100%	100%									
AMR	blaCTX-M-15	89%	100%									

qnrS1

88%

100%


AMR

2. LAMP, Genie III (OptiGene)

Singleplex assaysargetGene/sSensitivitySpecificityyphifliC100%100%MRblaCTX-M-1594%91%											
Gene/s	Sensitivity	Specificity									
fliC	100%	100%									
blaCTX-M-15	94%	91%									
qnrS1	93%	96%									
	Gene/s fliC blaCTX-M-15	Gene/sSensitivityfliC100%blaCTX-M-1594%									

LAMP time-to-result in as little as 8.5 mins

3. RPA-Lateral flow, HybriDetect (Milenia Biotec)

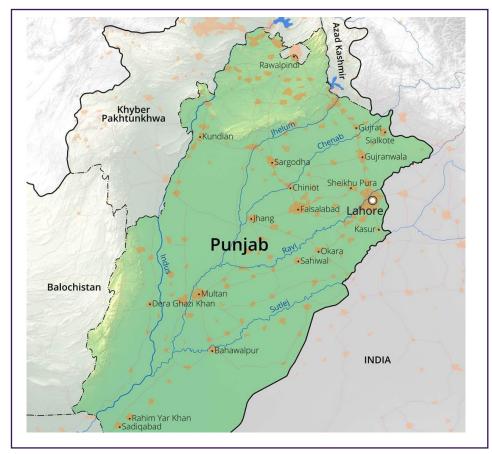
<u>Singleplex assays</u>											
Target	Gene/s	Sensitivity	Specificity								
Typhi	fliC	100%	100%								
AMR	blaCTX-M-15	88%	100%								
AMR	qnrS1	94%	100%								

RPA time-to-result in around 15 mins

Whole genome sequencing of XDR S. Typhi

Inconsistent AMR determinant chromosomal integration and plasmid acquisition.

AMR determinant		XDR Salmonella Typhi isolate																						
	1		2		3		4		5		6		7		9		11		12		13		16	
	С	Р	С	Р	С	Р	С	Р	С	Р	С	Р	С	Р	С	Р	С	Р	С	Ρ	С	Ρ	С	Р
aph(3")-lb	+	+	+	+		+		+		+	+			+		+	+	+		+	+	+	+	
aph(6)-ld	+	+	+	+		+		+		+	+			+		+	+	+		+	+	+	+	
bla _{тем-1в}	+	+		+		+		+		+	+		+	+		+	+	+		+	+	+	+	
catA1	+		+		+		+				+		+		+		+		+		+		+	
dfrA7	+		+		+		+				+		+		+		+		+		+		+	
<i>gyrA</i> (S83F)	+		+		+		+		+		+		+		+		+		+		+		+	
sul1	+		+		+		+				+		+		+		+		+		+		+	
sul2	+	+	+	+		+		+		+	+			+		+	+	+		+	+	+	+	
<i>Ыа</i> _{СТХ-М-15}		+		+		+		+	++	+			+	+		+		+		+		+		
qnrS1		+		+		+		+		+				+		+		+		+		+		


A chance to evaluate real-time PCR assays

- **Patient:** child presents at QCH after recently returning from Pakistan, presenting with symptoms of enteric fever
- **Diagnosis**: most-likely invasive infection following gastroenteritis; given travel history significant chance of invasive Salmonellosis (typhoid fever)
- **Treatment**: Ceftriaxone, then Azithromycin
- Pathology testing: 4-hour blood culture NEG; stool sample culture NEG, stool NAE Salmonella sp. POS at MDU.
- UQCCR testing: NAE of stool sample sent to us for testing (<u>research only</u>) with prototype real-time PCR assay. Results = Typhi target 1 POS, Typhi target 2 POS, Typhi H58 target POS, *bla*_{CTX-M} group 1 POS, *qnrS* POS.

New XDR S. Typhi diagnostics: moving forward

- Further screening of the limited clinical specimens (typhi bloodstream infections) occurring here in Queensland through collaboration with Pathology Queensland.
- Refinement of assays (if warranted) to improve sensitivity and specificity.
- Screening of clinical specimens in Lahore, Pakistan to validate assays in a XDR Typhoidendemic setting.
- Potential to validate and implement assays for use in Pakistan
- Gauge interest in pre-commercial validation with industry partners

Map of the Punjab province of Pakistan, with the capital Lahore located in the north-east. Source: freeworldmaps.net

Disclosures

As part of ARC Industrial Transformation Research Hub to Combat Antimicrobial Resistance, we receive research funding from both SpeeDx Pty. Ltd. and Cepheid.

Acknowledgments

Dr Emma Sweeney

Dr Nicole Ertl

Dr Adam Irwin

Michelle Bauer-Leo

Dr Brian Forde

A/Prof David Whiley

A/Prof Saba Riaz

