Rapid AMR diagnostics via recombinase polymerase amplification - our experiences to date.

Authors:

<u>Ertl NG</u>,¹ Tickner JA,¹ Irwin AD,^{1,2} Ayfan AKS,^{1,3} Forde BM,¹ Bauer MJ,¹ Wang CYT,² Harris PNA,^{1,4} Heney C,⁴ Zowawi HM,^{1,5,6}, Paterson DL,¹ Lahra MM,⁷ Macdonald J,^{8,9} Whiley DM^{1,2,4}

¹The University of Queensland, UQ Centre for Clinical Research, Faculty of Medicine, Brisbane, QLD, Australia, ²Infection Management and Prevention Service, Children's Health Queensland, Brisbane, QLD, Australia, ³Faculty of Science, Biochemistry Department, King Abdul-Aziz University (KAU), Jeddah, Saudi Arabia, ⁴Microbiology Department, Central Laboratory, Pathology Queensland, Brisbane, QLD, Australia, ⁵College of Medicine, King Saud bin Abdul-Aziz University for Health Science (KSAU-HS), Riyadh, Saudi Arabia, ⁶King Abdullah International Medical Research Centre (KAIMRC), Riyadh, Saudi Arabia, ⁷World Health Organization Collaborating Centre for STDs, Prince of Wales Hospital, Sydney, NSW, Australia, ⁸Centre for Bioinnovation and School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia, ⁹BioCifer Pty Ltd, Auchenflower, QLD, Australia

Background: Early detection of antimicrobial resistance (AMR) is pivotal to enhancing management, including targeting treatment, pinpointing patients requiring test-of-cure and/or isolating infected individuals. Isothermal amplification tests are well recognized for potential use at point-of-care settings due to their ease of use and limited technical requirements. Our laboratory has recently developed a range of rapid AMR tests utilizing isothermal recombinase polymerase amplification (RPA), and here we provide an overview of experiences to date.

Methods: RPA based assays coupled with lateral flow detection (RPA-LFD) have so far been developed for detection of *Neisseria gonorrhoeae* and associated ciprofloxacin resistance, as well as various other clinically important genes harbored by other Gram-negative bacteria; CTX-M, CMY-2, KPC, IMP and OXA-48.

Results: The RPA-LFD assays offer high analytical sensitivity, typically less than 100 copies per reaction, and can (depending on the DNA extraction step) be performed in less than 30 minutes. Our *N. gonorrhoeae* RPA assay, for example, provided a positive percentage agreement (PPA) of 87.5% compared with a commercial *N. gonorrhoeae* nucleic acid amplification test for detection of *N. gonorrhoeae*, and correctly identified ciprofloxacin-susceptible infections albeit at lower sensitivity (83%). The latter was achieved without any equipment, and incubating samples in the palm of one's hand. Hurdles include RPA's tolerance for sequence mismatches, and also identifying a suitably rapid DNA extraction step.

Conclusion: While some issues still need to be overcome, RPA-LFD in combination with rapid sample preparation methods have considerable potential for point-of-care application, particularly in low resource environments due to their fast sample to result turnaround time and independence from specialized equipment and personnel. Development and optimizations are ongoing.

Disclosure of Interest Statement:

This work was conducted in conjunction with BioCifer and was supported by a grant from Children's Hospital Foundation (Brisbane). JM is a shareholder and director of BioCifer.