High Rate of HCV Reinfection Among Recently Injecting Drug Users: Results from the TraP Hep C Program – A Prospective Nationwide, Population-Based Study

<u>Johannesson JM</u>, <u>Olafsson S, Tyrfingsson T, Runarsdottir V, Bergmann OM</u>, <u>Hansdottir I, Björnsson ES</u>, <u>Johannsson B, Sigurdardottir B, Fridriksdottir RH</u>, <u>Löve A, Hellard M, Löve TJ</u>, <u>Gudnason T, Heimisdottir M, Gottfredsson M</u>

Disclosure of interest

 Gilead Sciences provides DAAs for the Trap Hep C program in support of an epidemiological study. Fridriksdottir, Runarsdottir, Olafsson and Gottfredsson have received consultancy fee from Gilead Sciences.

Background

- Hepatitis C is caused by the hepatitis C virus (HCV)
 - Affects an estimated 70 million people globally
 - Leading cause of cirrhosis and hepatocellular carcinoma
- Most prominent mode of transmission is injection drug use (IDU) among people who inject drugs (PWID)
- Direct-acting antivirals (DAAs) are safe and effective
- WHO in 2016 set goal of eliminating HCV as a major health threat by 2030
 - 65% reduction in HCV-related deaths and 80% reduction in HCV incidence
- SVR does not confer protection to reinfection: major threat to elimination

Background

- Treatment as Prevention for Hepatitis C in Iceland (TraP Hep C) was launched in January 2016
 - Maximize diagnosis and treatment access (DAAs) for hepatitis C
 - Harm reduction scaled up, including needle-syringe programs
 - Establish follow-up and further linkage to care
- Onset of program:
 - Estimated 760 individuals with HCV infection (75 undiagnosed)
 - Confirmed 682 individuals with HCV infection
- After 36 months (183 new HCV infections diagnosed):
 - 824 (95.3%) diagnosed infections linked to care
 - 795 (96.5%) treatment initiations after linkage to care
 - 717 (90.2%) cures achieved after treatment initiation

Aims

- Determine reinfection rate of HCV among patients that successfully completed treatment within the TraP Hep C cohort
- Elucidate risk factors for reinfection

- Prospective cohort study
- Study cohort consisted of all HCV-cured patients with an estimated SVR between January 11th 2016 and November 20th 2018
- Follow-up until November 20th 2019
- Iceland as a setting:
 - Estimated population ~357,000, majority in capital region
 - Estimated HCV viremic population prevalence 0.3%
 - National health insurance
 - Single reference virology laboratory serving the whole country
 - Central registry of reportable infectious diseases (including HCV)

- All results from HCV RNA measurements performed in the country during the study period were obtained and connected to patient data
- Patient-specific variables gathered at treatment initiation:
 - Recent IDU: IDU within the last 6 months from time of baseline interview
 - Preferred injected drug: stimulant or non-stimulant
- Genotyping performed for all suspected reinfections
 - Deep sequencing and phylogenetic analysis to distinguish from virological relapse

- Two separate cohorts
 - SVR cohort: Cure defined as confirmed SVR at 12 weeks post-treatment or more
 - Non-SVR cohort: Cure defined as undetectable HCV RNA during or after treatment
- Observation time measured in person years (PYs):
 - SVR cohort: from SVR to most recent HCV RNA measurement or first measurement with detectable HCV RNA
 - Non-SVR cohort: from end of DAA treatment to most recent HCV RNA measurement or first measurement with detectable HCV RNA
- Reinfection: presence of detectable HCV RNA following cure without signs of virological relapse
 - Time to reinfection: observation time among those with confirmed reinfection

- Reinfection rate (RIR) calculated per 100 PYs
 - Theoretical minimum RIR with assumption of every cured patient having remained negative until November 20th 2019
- Survival analysis performed with reinfection as outcome of interest
- Multivariate Cox proportional hazards models used to identify predictor variables for reinfection
 - Traditional model: no account for recurrent events
 - Andersen Gill model: correlations among recurrent events induced by measured covariates
 - Frailty model: frailty term accounts for heterogeneity due to unmeasured variables
- Statistical analysis performed in R with R Studio

Results – SVR cohort

- 617 treatments of 597 patients
 - 68.5% male, 31.5% female
 - Average age 44.5 years
- 44 reinfections in 42 patients
 - 78.6% male, 21.4% female
- Follow-up: 484.8 PYs
 - Median observation time: 594.5 days
- Median time to diagnosis of reinfection: 252 days
- 85% with history of IDU and 33% with recent IDU
 - Stimulants preferred injected drug among 85%
- RIR: 9.1/100 PYs (95% CI 6.5 11.6)
 - Theoretical minimum RIR: 3.0/100 PYs (95% CI 2.2 3.9)

Results – Non-SVR cohort

- 640 treatments of 614 patients
 - o 67.9% male, 32.1% female
 - Average age 44.3 years
- 52 reinfections in 50 patients
 - 74% male, 26% female
- Follow-up: 693.0 PYs
 - Median observation time: 230 days
- Median time to diagnosis of reinfection: 328.5 days
- 84.8% with history of IDU and 34.4% with recent IDU
 - Stimulants preferred injected drug among 85.5%
- RIR: 7.5/100 PYs (95% CI 5.5 9.5)
 - Theoretical minimum RIR: 3.1/100 PYs (95% CI 2.2 3.9)

Variable	Reinfections	Person years	Reinfections/100 person years (95% confidence interval)
Gender			
Male	38	462.3	8.2 (5.7 - 10.7)
Female	14	230.7	6.1 (3.0 - 9.1)
Recent IDU by self-report			
Recent IDU	39	260.6	15 (10.6 - 19.3)
No recent IDU	12	357.8	3.4 (1.5 - 5.2)
оѕт	6	84.7	7.1 (1.6 - 12.6)
Use of non-injectable drugs			
Cannabis	9	100.4	9 (3.4 - 14.5)
Opiates	3	27.8	10.8 (-0.7 - 22.3)
Stimulants	10	56.9	17.6 (7.7 - 27.5)
Sedatives	7	38.5	18.2 (6.0 - 30.4)
Coinfection with HIV			
HIV-positive	7	60.5	11.6 (3.5 - 19.6)
HIV-negative	45	626.1	7.2 (5.2 - 9.2)
Age group			
Age 20-39 years	34	277.1	12.3 (8.4 - 16.1)
Age 40-59 years	16	318.8	5 (2.6 - 7.4)
Age 60 years and above	2	97.1	2.1 (-0.8 - 4.9)
Living situation at treatment initiation			
Halfway house	7	66.9	10.5 (3.1 - 17.8)
Homeless/streets	9	48.3	18.7 (7.7 - 29.6)
Own property/rental/relatives	24	514.8	4.7 (2.8 - 6.5)
Penitentiary	11	45.5	24.2 (11.7 - 36.6)

Results – SVR cohort

- Traditional Cox proportional hazards model:
 - Age group (5-year groups): HR 0.76, 95% CI 0.64 0.89
 - Recent IDU: HR 2.59, 95% CI 1.16 5.80
- Andersen Gill model:
 - Age group: HR 0.76, 95% CI 0.67 0.87
 - Recent IDU: HR 2.59, 95% CI 1.04 6.45
- Similar results in frailty model

Results – Non-SVR cohort

- Traditional Cox proportional hazards model:
 - Age group: HR 0.77, 95% CI 0.66 0.91
 - Recent IDU: HR 3.08, 95% CI 1.35 6.99
- Andersen Gill model:
 - Age group: **HR 0.79, 95% CI 0.67 0.92**
 - Recent IDU: HR 3.09, 95% CI 1.36 7.03
- Similar results in frailty model
- Subanalyses within group with recent IDU
 - Younger age group significantly associated with increased reinfection risk
 - Preference for either stimulant or non-stimulant injected drugs not significantly associated with reinfection risk
 - Number of injection days in the preceding month not significantly associated wit risk

Discussion

- Reinfection rate after treatment in Iceland is high
- Reinfection rate is particularly high among young marginalized individuals
 with recent IDU and those who have unstable housing
- Multivariate analyses reveal increased risk of reinfection among younger age groups and those with recent IDU

Discussion

- No risk association with preferred injected drug or rate of injections
 - Use of stimulants and mixed use (stimulants + opiates) particularly common in Iceland
- Overestimate of RIR due to more sampling from high-risk patients?
- Further emphasis on high-risk populations is necessary to maintain and further reduce HCV prevalence and transmission, and reach elimination goals
- This can best be done by:
 - Prevention efforts
 - Maintaining inclusive multidisciplinary care
 - Educating patients
 - Frequent testing
 - Continued follow-up of high-risk groups
 - Prompt treatment of reinfections

Questions?

	Female	%	Male	%	
Number of individuals	197 NA		417 NA		
Finished treatments	206 NA		434 NA		
Mean age (years)	42.9 NA		45 NA		
History of addiction*	126	64.0%	380	91.1%	
History of IDU*	156	79.2%	367	88.0%	
History of previous non-DAA treatment*	28	14.2%	49	11.8%	
HIV-infection*	13	6.6%	26	6.2%	
Recent IDU	64	31.1%	156	35.9%	
OST	17	8.3%	43	9.9%	
Use of non-injected drugs	36	17.5%	103	23.7%	
Cannabis	21	10.2%	72	16.6%	
Opiates	10	4.9%	13	3.0%	
Stimulants	16	7.8%	38	8.8%	
Sedatives	13	6.3%	17	3.9%	
Living situation at treatment initiation					
Own property/rental/relatives	166	80.6%	319	73.5%	
Halfway house	23	11.2%	38	8.8%	
Homeless/streets	10	4.9%	30	6.9%	
Penetentiary	4	1.9%	37	8.5%	
Other living arrangements	3	1.5%	10	2.3%	
Preferred intravenous drug					
Methylphenidate	61		98		
Other stimulants	70	44.9%	218	59.4%	
Opiates	19	12.2%	47	12.8%	
Other	6	3.8%	4	1.1%	
Cirrhosis	7	3.4%	38	8.8%	
Genotype					TDAD UED
3a	124	60.2%	243	56.0%	INAP NEP
1a	63	30.6%		37.8%	-TREATMENT AS PREVENTION-
1b	16	7.8%	17	3.9%	
Other	3	1.5%	10	2.3%	