

EARLY EXPERIENCE: BE PREPARED !

#marce2019

Ron de Kloet

Leiden University

The Netherlands

October 10, 2019

Founder Marcé Society

Ramesh 'Channi' Kumar Professor of Perinatal Psychiatry Institute of Psychiatry, London 1938-2000

- Causes, consequences and treatment of post-natal mental illness
- Impact of mother's postnatal illness on their children's development
- Oestrogen-related augmented dopaminergic activity in brain, importance for post-partum psychosis

Mercy Pregnancy and Emotional Well-being Study (MPEWS)

Understanding maternal mental health, fetal programming and child development. Study design and cohort profile - *Megan Galbally, Andrew Lewis et al*

Trans-generational stress regulation: mother-infant cortisol and maternal mental health across the perinatal period. Megan Galbally et al. Psychoneuroendocrinology 2019, in press

Stress, Cortisol, Oxytocin, Receptors, DNAm

Cortisol as master regulator of the stress response

Cortisol receptors mediate stress effects on DNA

• Cortisol programs brain circuits in perinatal life

Hans Selye

Input (stressor) → Processing information → **Output** (stress response)

Physical stressors & Psychological stressors: any stimulus that disturbs homeostasis and causes a response;

Stress response = spectrum of physiological and behavioral adaptations

Processing of information and stress response is modulated by

- Fear, Love
- Social competence
- Social support
- Reward
- Sense of safety
- Self esteem

The most severe stressor

Uncertainty

No information, No control, No prediction possible

Threats to integrity, social competence & self-esteem

Coping with Stressors

Males: fight or flight Females: tend and befriend

Johnson & Radley, Psychoneuroendocrinology 2018

Cortisol and corticosterone are glucocorticoids

Energy mobilization

Energy storage

Control of stress reaction

Promotes

Coping, Adaptation Emotional expression

Memory storage

Hypothalamus – Pituitary – Adrenal axis

Basal pulse pattern synchronizes daily and sleep-related events

DEPRESSION - elevated cortisol, flattened rhythm

PATTERNS MATTER RATHER THAN ABSOLUTE LEVELS

Disorders Linked to Over- and Under exposure to Cortisol

Over - exposure

Major depression
Psychotic depression
Anorexia nervosa
Sleep deprivation
Malnutrition
Childhood abuse
Excessive exercise

Under - exposure

- Atypical depression
- Chronic fatigue syndrome
- Fibromyalgia
- Post traumatic stress disorder
- Schizophrenia
- Panic disorder
- Rheumatoid arthritis Allergies Asthma

Chronic Stress and Excess Cortisol shrink neurons grow

Birth of new neurons is suppressed

Control

BrdU survival

Chronic stress

Amygdala

Emotion

Orbital fr cortex

DCX neurogenesis

Dentate gyrus

Oomen, Lucassen et al 2007

Hippocampus Cognition

Prefrontal Cortex

McEwen, 2015

Emotional reactivity

Cognition performance

Dreamtime.com

Question

• How does cortisol action change from *protective* to *harmful?*

- What is the cause?
- What are the consequences?

Cortisol mediates stress effects on DNA

Stress increases cortisol which binds to receptor

McEwen et al. 1968

Discovery - 2

Two receptor types (entries) for cortisol

Reul & de Kloet*,* 1985

Cell nucleus nerve cell MR red; GR green

Receptor 1: *high affinity*, if something new happens, searches in the memory, appraises and helps to find a coping strategy.

Receptor 2: *low affinity*, stores experience in the memory, helps to adapt and to prepare for the future

For the experts

Receptor 1 = MR = mineralocorticoid receptor Receptor 2 = GR = glucocorticoid receptor

Stressor

Stress-induced Cortisol secretion

- Genetic predisposition
- (early) life experience (epigenetic)

brain development

Seymour Levine, Michael Meaney et al.

Sonia Lupien 2009

Epidemiology: humans

Health Risks Depression Anxiety Drug addiction Diabetes Cardiovascular Metabolic syndrome Obesitas

Individual differences in neural & endocrine response to stress

Adapted from Szyf et al (2005) Frontiers in Neuroendocrinol. 26: 139-162

Stress hyporesponsive period

from postnatal day 1-12
 low basal corticosterone (CORT)
 no CORT response following mild stress

Altricial species Prematurely born

corticosterone

If cortisol is increased, then the hormone activates the amygdala fear circuit Effect of Maternal deprivation (24h) Dam is removed, pups stay home

Mimicking elements of maternal care eliminates effects of maternal deprivation

stroking (3x45 sec/24 h, every 8 hrs) normalizes brain function (ACTH, CRH, cfos) stroking + feeding normalizes
adrenal function (corticosterone)

NDEP = non-deprived ISO = deprived from maternal care

Early life animal models

HIPPOCAMPUS

Seahorses and their occasional sex-role reversal and would-be- female males

Early life animal models

- Single and repeated mother-pup separation procedures
 - depends on duration, frequency and timing of separation
 - pups rapidly learn to predict return of the dam
- Fragmented and unpredictable maternal signals (limited bedding)
- Select animals by maternal care received

Passive Nursing

Early-life environment: maternal care

Low Maternal Care (Low LG): \downarrow pre-pulse inhibition \uparrow emotional stress (CORT) response. \downarrow spatial learning & memory

28

Daskalakis et al,

EPIGENIC REGULATION

Quantitative morphological analysis of dendritic length

Β

Low LG = low licking & grooming score = little maternal care

Low LG

High LG

HIPPOCAMPUS

Champagne D L et al. J. Neurosci. 2008;28:6037-6045

Slide Preparation

CA3

Perforant path

cortex)

(from entorhinal

- Tetanic stimulation: 900 pulses of 10 Hz each over a span of 2 minutes
- Synaptic LTP is assessed for 60 minutes
- VEH: Artificial CSF
- CORT: 100 nM (20 min)

Champagne etal ;Adapted from Krugers et al (2005)

L Dentate gyrus

Mossy fibers

Maternal care

Long term potentiation and fear-motivated behavior

Champagne et al. 2008, 2009

• Predictive adaptive (match/mismatch – stress inoculation) concept (Champagne et al., 2008; Hanson & Gluckman, 2014; Nederhof & Schmidt, 2012). DOHAD

• Cumulative stress concept – or classical diathesis stress theory (Daskalakis et al. 2013)

• Differential susceptibility (biological sensitivity to context) concept (Ellis, Boyce et al. 2011)

Challenge

Cumulative stress Allostatic Load

Perth

Netherlands

Thank You !